Persistent Cohomology and Circle-valued coordinates

Mikael Vejdemo-Johansson
Vin de Silva
Dmitriy Morozov

March 12, 2009
Outline

1. Motivation: Intrinsic coordinates
2. Theory: Persistent cohomology and circle-valued maps
3. Practice: Finding and interpreting parametrizations
Finding coordinates

- Overall goal is to understand pointclouds.
- Data comes with coordinates. Different coordinate choice might concentrate the intrinsic information.
- We want to find few and very relevant intrinsic coordinates. Ideal case: 2d or 3d plots with a clear and relevant geometry.
In order to find few intrinsic coordinates, we want to stick close to the local dimension. Some shapes take up too many coordinates.

Locally 1-dimensional. Globally 2 coordinates needed to describe all points. The shape doesn’t fit in \mathbb{R}.

Similar problems arise with sphere and torus.
Suggested fix

Circle-valued coordinates

- Use $S^1 = [0, 1]/(0 \sim 1)$ as additional coordinate space
- Fixes the circle
- Fixes the torus
- Occurs naturally:
 - Phase coordinates for waves
 - Angle coordinates for directions
 - Any recurrent phenomenon
Outline

1 Motivation: Intrinsic coordinates

2 Theory: Persistent cohomology and circle-valued maps

3 Practice: Finding and interpreting parametrizations
Problem remains: how do we find circle-valued coordinates?

Persistent cohomology

- Degree one cohomology equivalent to circle-valued maps
- Persistence picks out relevant features from noise
- Once a feature-rich parameter has been found, we can work in ordinary (non-persistent) cohomology theories

We compute persistent cohomology by adapting the zig zag persistence algorithm to the dual diagram.
From cohomology to circle-valued parametrizations

We use the natural isomorphism $H^1(X; \mathbb{Z}) \cong [X, S^1]$

Issues

- Easy to compute: $H^1(X; \mathbb{Z}/p)$, with coefficients over a small prime. Linear algebra, coefficients fit inside machine word, division in $O(1)$ by lookup tables. Needed for the isomorphism: $H^1(X; \mathbb{Z})$.

We can, as long as $H^2(X; \mathbb{Z})$ has no p-torsion, lift $H^1(X; \mathbb{Z}/p) \to H^1(X; \mathbb{Z})$.

- The representative chains for $H^1(X; \mathbb{Z})$ yields very non-smooth maps: sends all data points to 0, and wraps the edges in the complex around the target circle.

We can smooth a cocycle in $C^1(X; \mathbb{Z})$ by moving it to a harmonic cocycle in $C^1(X; \mathbb{R}) \cap C_1(X; \mathbb{R})$ belonging to the same cohomology class in $H^1(X; \mathbb{Z})$.
Outline

1. Motivation: Intrinsic coordinates

2. Theory: Persistent cohomology and circle-valued maps

3. Practice: Finding and interpreting parametrizations
Parametrized circles
Parametrized circles
Parametrized circles
Parametrized circles
Knots and links
Knots and links
Knots and links
Torus
Torus
Persistent Cohomology and Circle-valued coordinates

Mikael Vejdemo-Johansson
Vin de Silva
Dmitriy Morozov

Motivation
Theory
Practice

Torus
Torus
Torus

Correlation plot for this torus parametrization
Torus

Correlation plot for a wedge of two circles
Correlation plot for an elliptic curve in \mathbb{CP}^2
Pop quiz
Pop quiz
Pop quiz
Pop quiz
Pop quiz
Mumford dataset

4.2 · 10^6 pixel patches from 4167 calibrated 1020 × 1532 images. Each 3 × 3 pixel patch obviously a vector in \mathbb{R}^9. Normalized to constant intensity and to unit euclidean norm. Transformed by a basis choice that highlights geometric features of the dataset itself. Result lies on the unit 7-sphere in \mathbb{R}^8.

Mumford dataset

We use the smoothing procedure developed by Jennifer Kloke. Once smoothed to a circle, we parametrize with persistent cohomology, and can pull the parametrization back to the original data points.
Mumford dataset
Acknowledgements

Thanks are due for this to:

- Vin de Silva, Dmitriy Morozov – my collaborators
- Jennifer Novak Kloke – smoothed Mumford data
- Gunnar Carlsson
- BIRS and the organizers
- ONR, DARPA-TDA, Pomona College and Stanford University – funding