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1 Motivation: Intrinsic coordinates

2 Theory: Persistent cohomology and circle-valued maps

3 Practice: Finding and interpreting coordinatizations
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Coordinatization

Essentially

It’s all about finding coordinate function on a dataset X ⊆ Rd .
Preferably few coordinates - cognitive tools.

Classically

Linear coordinatization: Find maps X → R, concentrating
information.

Principal Component Analysis

Projection pursuit

Recently

Nonlinear methods: drop expectation that for f coordinate:
f (λx + µy) = λf (x) + µf (y).

MDS, Kernel methods, Locally linear methods
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Problematic cases

Some shapes take up too many coordinates.

Locally 1-dimensional.
Globally 2 coordinates needed to
describe all points.
The shape doesn’t fit in R.
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Fixes

How can we fix this?

Circle-valued coordinates

Use S1 = [0, 1]/(0 ∼ 1) as additional coordinate space

Fixes the circle

Fixes the torus

Occurs naturally:

Phase coordinates for waves
Angle coordinates for directions

Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates



Motivation
Theory

Practice

Outline

1 Motivation: Intrinsic coordinates

2 Theory: Persistent cohomology and circle-valued maps

3 Practice: Finding and interpreting coordinatizations

Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates



Motivation
Theory

Practice

Circle-valued coordinates

Problem remains: how do we find circle-valued coordinates?

Persistent cohomology

Degree one cohomology equivalent to circle-valued maps

Persistence picks out relevant features from noise

Once a feature-rich parameter has been found, we can work in
ordinary (non-persistent) cohomology theories

The algorithm we use is a variation on the Persistence algorithm.
We introduce simplices one after the other, and reduce a
cumulative coboundary matrix.
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Circle-valued coordinates and cohomology

Problem remains: how do we find circle-valued coordinates?

Persistent cohomology

Degree one cohomology equivalent to circle-valued maps

Persistence picks out relevant features from noise

Once a feature-rich parameter has been found, we can work in
ordinary (non-persistent) cohomology theories

The algorithm we use is a variation on the Persistence algorithm.
We introduce simplices one after the other, and reduce a
cumulative coboundary matrix.
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From cohomology to circle-valued coordinatizations

Use canonical isomorphism

H1(X ; Z) ∼= [X , S1]

Issues

Easy to compute: Modular cohomology, coefficients in Fp for
small primes p.
Need for the isomorphism: Integer-valued cohomology.
Smoothness: Integer cohomology gives constant values on all
vertices, and wraps edges in the complex around the target
circle.

Numerical stability of cohomology computation and of the
smoothing operations.
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Smoothing

Integral 1-cocycle: integer weighted edge graph.

Coordinates found by edge traversal, increasing by edge
weights.

Each cohomologous cocycle guaranteed by cocycle condition
to give compatible values, mod 1.0, to each vertex.

Application straight on integral cocycle yields value 0 at each
vertex.

Given ζ integral cocycle, we wish to find cohomologous
cocycle z such that the edges are small.

Hence, we wish to find x such that ζ + ∂x has minimal
L2-norm.

This is a well-known optimization problem. We use the LSQR
algorithm.
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Parametrized circles
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Parametrized circles
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Knots
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Torus

Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates



Motivation
Theory

Practice

Torus

Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates



Motivation
Theory

Practice

Torus

Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates



Motivation
Theory

Practice

Torus

Morozov-de Silva-Vejdemo Johansson Persistent Cohomology and Circle-valued coordinates



Motivation
Theory

Practice

Torus
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Torus

Correlation plot for this torus parametrization
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Torus

Correlation plot for a wedge of two circles
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Torus

Correlation plot for the elliptic curve given by y2z − x3 − xz2 = 0
in CP2. Metric is given by d(p, q) = tan−1(pxqx + pyqy + pzqz)
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Pop quiz
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Pop quiz – the Double Torus
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Software and performance

The persistent cohomology algorithm is implemented in two places:

jPlex

http:
//comptop.stanford.
edu/programs/jplex

Java based. Matlab
integration.

Will do cohomology in the
next release.

Dionysus

http://www.mrzv.org/
software/dionysus/

C++ based. Integrates with
Python and CGAL.

Still very much under
development.

Orders of magnitude faster
than jPlex on these
examples.
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Timings for Dionysus

Example
# data
points

# simplices
total
time

time/size
(µs/spx)

Noisy circle 200 23 475 0.10s 4.26
Torus knot 400 36 936 0.16s 4.33
Wedge of 2 circles 400 76 763 0.36s 4.69
2 disjoint circles 400 45 809 0.20s 4.37
Torus 400 61 522 0.29s 4.71
Elliptic curve torus 400 44 184 0.14s 3.17
Double torus 3 120 764 878 5.28s 6.90
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An application: curve reconstruction

The following is joint work with Bei Wang and Sayan Mukhergee
at Duke University.

Problem statement

Given a finite point sample P, with noise, from a non-singular
curve γ : I− > X , can we recover the original curve γ? Or can we
at least find a way that - up to speed adjustments for the curve -
parametrizes the points we’ve sampled, giving an order of the
points in the order the curve visits them.

This connects to work Mukhergee is doing on finding invariants of
group actions from point samples.
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Approach: local cohomology and circular coordinates

Curves are locally like R. So we can parametrize locally, and
glue parametrizations together.

Once we settle on a neighbourhood of a sample point, we can
compute local cohomology – we intersect the entire simplicial
complex with our neighbourhood, and compute cohomology
relative to everything outside this neighbourhood.

Cohomology relative subspaces collapses the subspaces to a
single point. If we do this outside a ball intersecting a curve,
the ends of the curve passing through the boundary of the ball
get identified.

The result should have homotopy type a circle.
We can parametrize this circle. And then unroll the
parametrization to form a parametrized line.
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We wish to reconstruct the underlying curve from a predominantly
1-dimensional data set with noise.
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We shall work locally - so we pick a point...
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We shall work locally - so we pick a point...
...and a neighbourhood of this point.
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We then proceed to compute persistent cohomology - but with a
twist. We introduce a “virtual point” outside our pointcloud, and
any simplices that lead outside end up leading to this point instead
of to the points outside.
This gives us cohomology relative to the complement of our chosen
neighbourhood.
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As we progress through the filtration, we collect the 2-skeleton,
and compute the persistent degree 1 cohomology. As long as the
interior of our chosen ball stays disconnected, nothing interesting
will happen.
Once things start crossing the boundary of our ball, we replace any
simplex crossing the boundary with one that connects the participat-
ing interior vertices with the virtual conepoint. Replaced simplices
are in red while the replacing simplices appear in blue.
For ε = 0.5:
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As we progress through the filtration, we collect the 2-skeleton,
and compute the persistent degree 1 cohomology. As long as the
interior of our chosen ball stays disconnected, nothing interesting
will happen.
Once things start crossing the boundary of our ball, we replace any
simplex crossing the boundary with one that connects the participat-
ing interior vertices with the virtual conepoint. Replaced simplices
are in red while the replacing simplices appear in blue.
For ε = 0.75:
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As we progress through the filtration, we collect the 2-skeleton,
and compute the persistent degree 1 cohomology. As long as the
interior of our chosen ball stays disconnected, nothing interesting
will happen.
Once things start crossing the boundary of our ball, we replace any
simplex crossing the boundary with one that connects the participat-
ing interior vertices with the virtual conepoint. Replaced simplices
are in red while the replacing simplices appear in blue.
For ε = 0.9:
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As we progress through the filtration, we collect the 2-skeleton,
and compute the persistent degree 1 cohomology. As long as the
interior of our chosen ball stays disconnected, nothing interesting
will happen.
Once things start crossing the boundary of our ball, we replace any
simplex crossing the boundary with one that connects the participat-
ing interior vertices with the virtual conepoint. Replaced simplices
are in red while the replacing simplices appear in blue.
For ε = 1.0:
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Now - here, at last, we actually see a cycle appearing!
This cycle will give rise to a non-trivial coclass in

H1(X ,X \ (X ∩ B); Z)

which we can use to give a coordinate function on the abstract
simplicial complex depicted here.
Hence, we can translate the resulting coordinates so that 0.0 = 1.0
is located at the cone point.
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Now - here, at last, we actually see a cycle appearing!
This cycle will give rise to a non-trivial coclass in

H1(X ,X \ (X ∩ B); Z)

which we can use to give a coordinate function on the abstract
simplicial complex depicted here.
Hence, we can translate the resulting coordinates so that 0.0 = 1.0
is located at the cone point.
Then, the result is a continuous function X ∩ B → [0, 1]. In other
words, we get a real-valued local coordinate function.
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Doing this repeatedly, for an open cover of the whole point cloud, we
can get overlapping parametrizations that we can patch together to
give a parametrization of the entire curve the points were sampled
from.
As long as we have a non-singular 1-manifold, this will work well.
For singular cases, we need more work, but can still use this as a
basis for the constructions.
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