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Point clouds

Features of modern data analysis

I High dimensionality

I Large datasets

I Increasing interest in subtle relationships

Dependencies and relationships in data expressible as geometric
concepts.

Often, data is expected to be a (noisy) sample of points on some
manifold in some (high-dimensional) ambient space.
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Quantity vs. Quality

Classically

I Data analysis and statistics concerned with simple descriptors

I Mean, median, variance, percentiles, . . .

I Focus on quantitative measurements

I Only works if metrics are easily justified (physics: easy,
genetics: harder)

Topologically

I Metrics no longer trusted: instead interested in connectivity
and closeness.

I Less interested in quantitative (how large variance), and more
interested in qualitative (how many components) properties.
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Approach at Stanford

Fundamental object to study: finite metric space (X, µ), preferably
with embedding in ambient space Rd .

Geometric properties captured by topological data:

Čech complex

C (X, ε) contains simplex v0, . . . , vk if there is a point v in ambient
Euclidean space such that all µ(vi , v) < ε.

Computationally easier:

Vietoris-Rips complex

C (X, ε) contains simplex v0, . . . , vk if all µ(vi , vj) < ε.

As ε varies, the Čech and Vietoris-Rips complexes capture
topological features of a point cloud at different scales.

Vejdemo-Johansson, de Silva, Morozov Persistent cohomology and circular coordinates



Scale dependent features

I Choice of ε determines scale

I Different scales highlight different topological features.

I How do we choose ε?

I How do we tell features from noise?
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Scale dependent features

Vejdemo-Johansson, de Silva, Morozov Persistent cohomology and circular coordinates



Scale dependent features

1=3
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Scale dependent features
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Scale dependent features

1=2
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Persistence

Vietoris-Rips and Čech complexes yield filtered simplicial
complexes: C (X, ε0) ⊆ C (X, ε1) if ε0 < ε1.

We call persistent from ε to ε′ those representative cycles in
Hk(C (X, ε1)) that lie in the image of the homomorphism
Hk(C (X, ε0))→ Hk(C (X, ε1)) induced by the inclusion.
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Algebraic framework

Chain complex from (finite) filtered simplicial complex: graded
k[t]-module. t acts by inclusion from one filtration step to the
next.

Homology is a subquotient of k[t]-modules. t-action carries by
functoriality.

If coefficients lie in a field, structure theorems for PIDs yield:

H =
⊕

Σdik[t]⊕
⊕

Σdik[t]/tdj

We capture the decomposition as a barcode: an assembly of
intervals [di ,∞) and [di , dj).

Length of interval corresponds to importance of the feature it
describes.
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Persistence applications

To date, a number of applications have been found for persistent
homology:

I Diabetes type I and II easily recognizable with topological
clustering. [Carlsson et.al.]

I Cell phone coverage quality can be done by local homology
computations. [de Silva, Ghrist]

I 3× 3 pixel patches from natural images distribute on a Klein
bottle. [Carlsson, Ishkanov, de Silva, Zomorodian]

I Textures can be characterized by the density distribution on
this Klein bottle. [Carlsson, Perea]
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Coordinate functions give quantitative tools

Classically

Powerful tools for data analysis given by Principal Component
Analysis and Singular Value Decomposition.

I Linear change of basis for space of data

I New basis exhibits interesting features in small subspaces

I Basis vector v corresponds to coordinate function cv : X → R
given by cv (d) = 〈v , d〉.
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Moral: coordinate functions are helpful for data analysis

New directions

Find coordinate functions.

I Looser requirements: topological maps, not necessarily linear

I Wider coordinate spaces: drop requirement of real-valued
coordinates.

What is the next easiest coordinate space?
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Automating coordinate recovery

In order to automate the process used for the Klein bottle, we are
studying topological techniques to recover coordinate functions.

In (de Silva – Morozov – V-J, 2009), we propose using the natural
isomorphism of functors

H1(−,Z) ∼= [X ,S1]

to produce circular coordinates. This requires a persistent
cohomology framework to produce good coclasses, and a
smoothing step to produce useful coordinate functions.
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Future directions
Mixed coordinate systems

I We can work over open cubes (classically) and over tori
(S1 × S1 × · · · × S1).

I Would be interesting to combine different coordinates

I Working on using H0(hom(C∗X ,C∗Y ), dY f ± fdX ) to produce
coordinates for X in Y for arbitrary simplicial complexes.

Periodicity analysis

I Single non-trivial 1-cycle might indicate recurrence

I Coordinatization yields intrinsic progression for recurrent
systems

I Yields approach to periodic systems fundamentally different
from recurrence diagrams and from fourier analysis
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