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Definition

A symmetric (resp. shuffle) operad is a collection O(n) of vector
spaces, one for each n, together with linear maps

◦σ : O(n)× O(m1)× · · · × O(mn) → O(m1 + · · ·+ mn)

called composition maps. The composition maps are parametrized
by arbitrary permutations in Sm1+···+mn (resp. by shuffle
permutations of type (m1, . . . ,mn)) that provide symmetry actions
to the operad. These maps are required to fulfill associativity
conditions and allow for a unit for the composition.
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Mental model

Key to internalizing any kind of algebraic construction is the model
for free objects.

Free commutative rings Polynomial rings
Free monoids Strings in an alphabet
Free categories Paths in a graph
Free operads Rooted trees; with internal nodes labelled by a

generating set, and leaves ordered according to any
permutation acting.
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Why the shuffle operads?
The objects of most interest are the symmetric operads – why
shuffle operads?

For symmetric operads, several good properties for Gröbner bases
cannot be fulfilled: dimension counting using initial ideals fails
badly with full symmetries.

Theorem [Dotsenko–Khoroshkin]

The forgetful functor from symmetric operads to shuffle operads is
monoidal and injective on objects.

This suffices for us to be able to compute with shuffle operads
instead of symmetric operads.
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Enabling Gröbner bases

Picking out a shuffle operad corresponding to an interesting
symmetric operad allows us to work computationally without losing
information to excessive symmetries.

Theorem [Dotsenko–Khoroshkin]

The Diamond Lemma holds for shuffle operads.
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What I did last summer

Starting at the cirm workshop Operads 09, I worked with
Dotsenko on a reference implementation for the approach by
Dotsenko–Khoroshkin.

The Math.Operad Haskell module is provided by the package
Operads available at
http://hackage.haskell.org/package/Operads.

The Operads package works well with the Haskell Platform
http://hackage.haskell.org/platform/ version 2010.2.0.0.
It is provided under a BSD license.
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Getting the software running

1. Download and install the Haskell platform
http://hackage.haskell.org/platform/

2. Download and unpack the Operads package
http://hackage.haskell.org/package/Operads

3. From the directory of Operads, run:
ghc --make Setup
./Setup configure && ./Setup build &&

./Setup install
4. Operads is now available in your Haskell platform installation.

Example code for a number of examples resides in the
examples/ directory in the current directory.
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Example session

% ghci -cpp Math.Operad
*Math.Operad> let v = corolla 2 [1,2]
*Math.Operad> let [g1t1,g1t2,g2t2] =

[shuffleCompose 1 [1,2,3] v v,
shuffleCompose 2 [1,2,3] v v,
shuffleCompose 1 [1,3,2] v v]

*Math.Operad> let ac =
[(oet g1t1) + (oet g1t2), (oet g2t2) - (oet g1t2)]
:: [OperadElement Integer Rational PathPerm]

*Math.Operad> let acGB = operadicBuchberger ac
*Math.Operad> length acGB
3
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Why Haskell?

I Easy treeshaped datatypes
data Tree nodeType leafType =

Leaf leafType
| Node nodeType [Tree nodeType leafType]

I Easy and fast recursion; all the benefits of a functional
programming language.

I Algebraic approaches to programming; most mathematics can
be translated word-by-word into workable code.
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Data type choices

Monomials Trees:
data Tree nodeType leafType =

Leaf leafType
| Node nodeType [Tree nodeType leafType]

Elements Polynomials of trees:
type OperadElement n l r =

Map (Tree n l) r

Associative array (stored as balanced binary tree) of
coefficients keyed by monomials.
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Algebra and analysis with datatypes
In classical Buchberger, reduction and S-polynomials are given by:

Sf,g =
lcm(lm f, lm g)

lm f f − lcm(lm f, lm g)
lm g g
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Algebra and analysis with datatypes
In non-commutative Buchberger, reduction and S-polynomials are
given by, for each overlap Olm f,lm g:

Sf,g = (Olm f,lm g/ lm f)f − g(lm g\Olm f,lm g)
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Algebra and analysis with datatypes
In operadic Buchberger:

I One S-polynomial for each overlap of two initial tree
monomials.

I Embedding of each tree into the common multiple most
relevant.

I S-polynomials and reductions rely on being able to remove
factor from common multiple; and apply the outside of the
factor tree to the other trees in a polynomial.

This forms a map mS,T that takes polynomials to multiplied up
polynomials, and thus, for a specific common multiple C of lm f, lm g,

Sf,g = mlm f,C(f)− mlm g,C(g)
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Derivatives of datatypes
Data type construction needed well known in Combinatorial
Species; as well as in the Functional Languages community:

A data type is a functor. Formal derivatives of these functors give
the data type with a single element removed.

Lists are given by the functor equation
L(x) = 1 + x × L(x). Implicit derivative is
L′(x) = x × L′(x) + L(x) = L(x) + L(x).

Operad trees are given by the functor equation
OTℓ(x) = 1 + x × L(OTℓ(x)). Implicit derivative is
OT′

ℓ(x) = L(OTℓ(x)) + x × L′(OTℓ(x))× OT′
ℓ(x).

This final equation can be used as is for a data type declaration in
Haskell.
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Comparisons

Most monomial orderings proposed by Dotsenko–Khoroshkin rely
on a tree traversal to collect data needed for ordering the trees.

Balanced binary trees perform a lot of comparisons between keys.

As a result, our first implementation spent almost all
computational time traversing monomial trees.
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Comparisons – Bag datastorage

As a first approach, we tried using a Bag datatype

data Bag key value =
Bag (key, value) [(key, value)]

which performs addition by appending key/value pairs except for if
the leading terms match. This triggers a consolidation where all
the added pairs are added up, thus amortizing additions over time.
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Comparisons – Bag datastorage

Inspiration from homology computations, where it has been used
to noticable benefit.

However: Gröbner basis computations do very many arithmetic
operations with matching leading terms. Thus, the Bag datatype
never managed to delay additions.
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Comparisons – Caching wrapper around Map

The solution we settled on has a wrapper around Map that provides
caching of the tree traversal data for the monomial trees.

This certainly speeds the code up significantly; and demotes the
comparisons in the storage from their leading position among the
timesinks in profiling.

M. Vejdemo-Johansson and V. Dotsenko Operadic Gröbner Bases: an implementation


	Operads and Gröbner bases
	Our implementation
	Issues with the implementation

