# Topological data analysis and the construction of intrinsic circle-valued coordinates.

Mikael Vejdemo-Johansson

11-1-11

# Data has shape

#### What is data?

Data comes as numerical values: for instance physiological measurements from patients in a study.

Captured as point clouds in  $\mathbb{R}^d$ .

#### What is shape?







#### Shape matters



# Homology

One major tool for describing these shapes comes from topology:

The *i*th homology with coefficients in a field k assigns to a topological space X a vector space  $H_i(X; k)$ .

Easiest description is through Betti numbers  $\beta_i = \dim_k H_i(X; k)$ . Counts the number of *i*-dimensional voids. (almost)

Pleasant to use because computable with matrix arithmetic.

# Homology – intuitively



$$\beta_0 = 1$$
$$\beta_1 = 1$$



$$\beta_0 = 1$$



$$\beta_0 = 1$$
$$\beta_1 = 2$$



$$\beta_1 = 0$$
$$\beta_2 = 1$$

 $\beta_0 = 1$ 



$$\beta_0 = 1$$

$$\beta_1 = 2$$

$$\beta_2 = 1$$



# Homology — why algebra?

Even if we only work with  $\beta_i$ , the algebra provided by using vector spaces remains important.

At the core: Noether's principle. Along topological maps, the homology groups change with linear maps.

$$X \xrightarrow{f} Y$$

$$H_i(X; k) \xrightarrow{H_i(f; k)} H_i(Y; k)$$

Vector space structures carry additional information that can be leveraged for computation or analysis. This functoriality property will reappear later.

# Simplicial topology: continuous made discrete

#### Definition

A simplicial complex is a family of simplices: vertices, edges, triangles, tetrahedra, ... – such that any two simplices intersect in a subsimplex.

#### Definition

An abstract simplicial complex is a family of subsets of a given set V, such that all subsets of a member are members.



### Simplicial topology: continuous made discrete

#### Definition

A simplicial complex is a family of simplices: vertices, edges, triangles, tetrahedra, ... – such that any two simplices intersect in a subsimplex.





#### Definition

An abstract simplicial complex is a family of subsets of a given set V, such that all subsets of a member are members.

#### Definition

- ► Contains one vertex for each element in *X*.
- Contains a simplex  $(x_0, \ldots, x_k)$  exactly when  $d(x_i, d_i) < \epsilon$  for all  $i, j \in [k]$ .

#### Definition

- ► Contains one vertex for each element in *X*.
- Contains a simplex  $(x_0, \ldots, x_k)$  exactly when  $d(x_i, d_i) < \epsilon$  for all  $i, j \in [k]$ .



#### Definition

- ► Contains one vertex for each element in *X*.
- Contains a simplex  $(x_0, \ldots, x_k)$  exactly when  $d(x_i, d_i) < \epsilon$  for all  $i, j \in [k]$ .



#### Definition

- ► Contains one vertex for each element in *X*.
- Contains a simplex  $(x_0, \ldots, x_k)$  exactly when  $d(x_i, d_j) < \epsilon$  for all  $i, j \in [k]$ .



#### Definition

- ► Contains one vertex for each element in *X*.
- Contains a simplex  $(x_0, \ldots, x_k)$  exactly when  $d(x_i, d_j) < \epsilon$  for all  $i, j \in [k]$ .



# Computing homology

Given a simplicial complex S we can compute its homology using matrix operations.

- ▶ To *S* we assign a vector space  $CS = \bigoplus_{\sigma \in S} \sigma \cdot k$ .
- On CS we define a linear boundary map ∂ : CS → CS. Each simplex is mapped to a (signed) sum of the maximal simplices on its boundary.
- ▶ From the algebra (and geometry) at hand follows  $\partial(\partial\sigma) = 0$  for all simplices  $\sigma$ . So  $\partial(S) \subseteq \ker \partial$ .
- ▶ We define the homology  $H(S; k) = \ker \partial / \partial(S)$ .
- ▶ Restricting to i-dimensional simplices yields H<sub>i</sub>(S; k); the i-dimensional homology group.











Better approach: study changes in  $H_i(VR_{\epsilon}(X); k)$  for different values of  $\epsilon$ .

If  $\epsilon < \epsilon'$ , then  $VR_{\epsilon}(X) \subset VR_{\epsilon'}(X)$ . By functoriality of  $H_i$ , the inclusion map of simplicial complexes induces a map  $H_i(VR_{\epsilon}(X);k) \to H_i(VR_{\epsilon'}(X);k)$ .

We can summarize with a diagram of vector spaces and linear maps

$$H_i(VR_{\epsilon_0}(X)) \to H_i(VR_{\epsilon_1}(X)) \to \cdots \to H_i(VR_{\epsilon_k}(X))$$

A diagram like this we'll call a persistent vector space.



There is an equivalence between persistent vector spaces and graded k[t]-modules.

$$V_0 \stackrel{\iota}{\to} V_1 \stackrel{\iota}{\to} \dots \stackrel{\iota}{\to} V_k \qquad \Rightarrow \qquad \bigoplus_i V_i \quad =: V_*$$

The module structure is given by determining the action of t.

$$t \cdot (v_0, v_1, \dots, v_k) = (0, \iota v_0, \iota v_1, \dots, \iota v_{k-1})$$



The ring k[t] is a graded PID, and thus graded modules over k[t] have unique decompositions:

$$V_* = \bigoplus_i t^{a_i} k[t] \oplus \bigoplus_j t^{b_j} k[t]/t^{c_j}$$

The ring k[t] is a graded PID, and thus graded modules over k[t] have unique decompositions:

$$V_* = \bigoplus_i t^{a_i} k[t] \oplus \bigoplus_j t^{b_j} k[t]/t^{c_j}$$
 $[a_i,\infty)$ 
 $[b_j,b_j+c_j)$ 

The ring k[t] is a graded PID, and thus graded modules over k[t] have unique decompositions:

$$V_* = igoplus_i t^{a_i} k[t] \oplus igoplus_j t^{b_j} k[t]/t^{c_j} \ [b_j, b_j + c_j)$$



#### Interpreting the barcode

Barcodes of betti numbers of Vietoris-Rips complexes of point clouds tell us which homological properties are significant, and which result from noise.

The length of an interval corresponds to the size of the corresponding feature.







#### Example: natural images

Lee-Mumford-Pedersen investigated whether a statistically significant difference exists between natural and random images.

Natural images form a "subspace" of all images. Dimension of ambient space e.g.  $640\times480=307\,200.$ 

This space of natural images should have:

- high dimension: there are many different images.
- high codimension: random images look nothing like natural ones.

### Natural 3x3 patches

Instead of studying entire images, we consider the distribution of  $3\times 3$  pixel patches.

Most of these will be approximately constant in natural images. Allowing these drowns out structure.

Lee-Mumford-Pedersen chose  $8\,500\,000$  patches with high contrast from a collection of black-and-white images used in cognition research. Each  $3\times3$ -patch is considered a vector in  $\mathbb{R}^9$ .

Normalised brightness:  $\mathbb{R}^9 \to \mathbb{R}^8$ . Normalised contrast:  $\mathbb{R}^8 \to S^7$ .

Subsequent topological analysis by Carlsson–de Silva–Ishkanov–Zomorodian.



# Pixel patches in $S^7$

The resulting patches are dense in  $S^7$  – so we consider high-density regions.

Pick out 25% densest points. We can pick a parametrised method to measure density:

#### Definition

k-codensity  $\delta_k(x)$  of a point x is the distance to its kth nearest neighbour.

k-density  $d_k(x)$  is  $1/\delta_k(x)$ .

High k yields a smoothly changing density measure capturing global properties. Low k yields a wilder density measure capturing local properties. k acts as a kind of focus control.



# $300\text{-}\mathsf{density}$



# $300\text{-}\mathsf{density}$



# 15-density



# 15-density



#### Three circles



### Identifying the subspace of natural pixel patches

Raising the cut-off bar yields, with coefficients in  $\mathbb{F}_2$ 

$$\beta_0 = 1$$
  $\beta_1 = 2$   $\beta_2 = 1$ 

Assuming the shape is a surface, this corresponds to one of





# Identifying the subspace of natural pixel patches

Raising the cut-off bar yields, with coefficients in  $\mathbb{F}_3$ 

$$\beta_0 = 1 \qquad \beta_1 = 1$$

Thus, the relevant shape is:



# Klein bottle of pixel patches



# Applications of this analysis

#### Image compression

A  $3 \times 3$ -cluster may be described using 4 values:

- Position of its projection onto the Klein bottle
- Original brightness
- Original contrast

#### Texture analysis

Textures yield distributions of occuring patches on the Klein bottle. Rotating the texture corresponds to translating the distribution. [J Perea]



#### Coordinatization methods

My own work is on automating the above process by finding topological methods to recover intrinsic coordinate maps.

#### Idea

- Starting from a dataset X: compute its persistent homology  $H(VR_*(X); k)$
- ► Guess a simplicial complex Y with corresponding homology
- ▶ Find maps  $X \to Y$  or  $VR_*(X) \to Y$  that lift to the expected correspondance.

#### First results

Joint with Vin de Silva and Dmitriy Morozov.

We can use that the circle is an Eilenberg-Mac Lane space, and thus

$$H^1(X;\mathbb{Z})=[X,S^1]$$

We have established a definition of persistent cohomology, and produced techniques, algorithms and software for computing circle-valued coordinate functions using cohomology and a smoothing step.

#### Future directions

- ▶ Approach more generic coordinatizations by studying optimal chains in  $H_0(\text{hom}(CX, CY)) = \bigoplus_{p} \text{hom}(H_pX, H_pY)$ .
- ▶ Apply the circular coordinates work to periodic and recurrent systems and signals. Currently looking at data sets from: meteorology, climate research, gait research, music.
- ▶ Use circular coordinates for quality control on existing analysis methods for periodic signals.

#### Questions?



Delay embedding of a window from a clarinet tone, using circular coordinates and a persistence diagram to quality control the delay embedding.