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Persistence and algebra

Persistence modules

Introduced and identified by Zomorodian and Carlsson (2005).

Definition
A persistence module M is a graded module over the graded ring k|t].

Connection to persistent homology

Filtered chain complexes and their persistent homology both are
persistence modules.

A filtered chain complex has a generator in degree n for each simplex
appearing at filtration step n.

A persistent homology module has a generator in degree n killed by t™
for each barcode entry (n,n 4+ m).
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Persistence and algebra

Category of persistence modules

Thus, to study persistent homology, we will benefit from studying the
category of persistence modules — which by the results by Zomorodian and
Carlsson means studying the category of graded modules over k[t|.

Very nice ring. Very nice category. Here are some things that are true:

o Euclidean domain. Division algorithm works. Also, therefore PID.

o Submodules of free modules are free. All modules have a presentation
by a short exact sequence 0 —+ R — G — M — 0 where R, G are both
free modules.
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Computational representation

Nested modules

Since persistence modules have canonically free presentation, we can
represent a persistence module by tracking the generators and relations.
There are two ways to do this with a global module C of chains:

Represent chains

We maintain matrices
representing

G— CandR—C

Represent relations embedding

We maintain matrices
representing

G— CandR— G

+ This is the output from some
existing implementations

+ We can work with each
matrix separately

- Larger matrices
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+ We have swifter access to the

barcode
- We have to modify both
matrices simultaneously “uﬂ

&>

6/30

19 June 2012



Computational representation

Homomorphisms as matrices with conditions

A homomorphism between two modules can be represented by images of
the generators such that boundaries all map to boundaries.

0 R G M 0
0 R G N 0

To represent a homomorphism M — N, it is enough to work with a
homomorphism G — G’ known to map relations to relations.

This corresponds to the well-formed map requirement in
Cohen-Steiner, Edelsbrunner, Harer, Morozov:
Persistent Homology for Kernels, Images, and Cokernels. %
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Algorithms

Normal forms, equality, and membership

Question
How can we determine equality for two elements of M = G/R?

Question

How can we determine whether z € C represents an element of
M= G/R?

Question
How can we determine whether z € G represents an element of R?

Question
How do we produce bases for G and R that make computation easy?

‘
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Algorithms

Normal forms, equality, and membership

Answer
A Grobner basis comes with extensive computational guarantees. J

Reduction modulo a Grobner basis, in any order, until no more pivots
(leading elements) apply is guaranteed to provide a normal form. Normal
form equal to 0 implies membership. Equal normal form implies equality
(modulo the Grobner basis).

For modules over a field k, a Grébner basis is equivalent to a reduced
echelon form (REF).

Helpful fact
The ring k[t] is sufficiently much like a field — a Grobner basis of

. . EXax
graded modules is also equivalent to a reduced echelon form. =
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Algorithms

Normal forms, equality, and membership

We shall want to maintain G and R with bases and normal form such that R is
always represented by a REF, and G is always reduced with respect to R.

We can avoid redundancy by keeping a basis for G reduced to a REF as well.

This is in particular important since the persistence algorithm itself works
with a membership test in the relations module as the fundamental step.

<
%g

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 19 June 2012 11/30




Algorithms

Graded Smith normal form

There is a way to compute a Smith Normal Form in a graded sense.

Properties of a Graded Smith Normal Form
@ Rows are ordered by increasing degree
o Columns are ordered by increasing degree
e Each row has at most one non-zero entry
e Each column has at most one non-zero entry
o Lower degree entries divide all higher degree entries

Strictly speaking, this is a permutation of the classical Smith Normal Form.
EXax
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Algorithms

Graded Smith normal form

Core feature:
Computability

We can compute a Graded Smith Normal Form by reducing rows and
columns in increasing order of degree. Thus we can compute it compatibly
with the gradings present.

Conditions

To do this, we require the coefficients to come from a graded principal ideal

domain. k[t] fulfills this requirement.
)
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SNF and barcodes

Why should we care about Smith normal forms?

Persistence modules and barcodes

A graded Smith normal form of the inclusion map R — G is the same thing
as a barcode of M = G/R.

Proof sketch

A graded Smith normal form is a simultaneous basis choice of Rand G
such that each basis element of R maps onto a k[t]-multiple of a basis
element of G.

This is exactly what produces a barcode: bases for cycles and
boundaries such that each boundary basis element kills exactly one
cycle basis element.

) S
%
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Free pullbacks

One technique that will show up a lot in the subsequent constructions is to
compute a kernel of a map between free modules. This is done using a REF
computation:

@ Reduce the matrix of the map to a REF, tracking the operations
performed.

o Operation combinations corresponding to 0-rows are generators of the
kernel.

This can compute any pullback of C Ty A & Bwhere all modules are free as

the kernelof B& C M A.

<
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Illustration

M= G/RandN =G'/R.
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Algorithms

Illustration

f: M — Nrepresented by ¢ : G — G’ such that ¢(R) C R'.

We shall be illustrating the various constructions based on this figure.
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Algorithms

Image

f: M — Nrepresented by ¢ : G — G’ such that ¢(R) C R'.

e Compute ¢(g) for each basis element g € G.
e Reduce images modulo the REF for R’
o These are the generators forimf.

For the relations, we need to compute a basis for ¢(G) N R'. This is the
pullback of ¢ and the inclusion of R.
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Algorithms

Cokernel

f: M — Nrepresented by ¢ : G — G’ such that ¢(R) C R'.

e Compute ¢(g) for each basis element g € G.
e Reduce the basis of G’ by the images ¢(g).

This gives you generators for coker f. The relations are those in R together
with all the images ¢(g).

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 19 June 2012 19/30




Algorithms

Kernel

f: M — Nrepresented by ¢ : G — G’ such that ¢(R) C R'.

Computing the kernel is a two-step process. One step computes the
generators, and the next step computes the relations.
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Kernel (Step 1: Generators)
f: M — Nrepresented by ¢ : G — G’ such that ¢(R) C R'.
Generators are given as a pullback of ¢ and the inclusion map R" — G'.

Projecting onto the first factor, we get an embedding of the kernel

generators into G. We will call this module K and the projection map
i:K— G.

Algebraic Persistence 19 June 2012 21/30

M Vejdemo-Johansson (St Andrews)




Algorithms

Kernel (Step 2: Relations)

f: M — Nrepresented by ¢ : G — G’ such that ¢(R) C R'.

Relations of the kernel is given by a pullback of i and the inclusion map
R — G. The projection onto K gives the inclusion map of relations into
generators for the kernel.
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Pushouts and pullbacks

With the tools we developed above, we are able to compute pullbacks and
pushouts for persistence modules in general.

Pullback Givenf: A — Candg: B — C, the pullback s
ker((a,b) — f(a) —g(b)).

Pushout Givenf: A — Bandg : A — C, the pushoutis
coker(a — (f(a),g(a)).
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Algorithms

Tensor products

Generators and relations for M @ N
The tensor product M @ N of M = G/Rand N = G’ /R’, with presentation
mapsi:R— Gandj: R — G

e Pick bases B for G, B for G'.

e Tensor product generators have as basis: B x B'.
We write b ® b’ for the basis element from (b, b’).

e Tensor product relations are generated by ir ® g’ and g’ ® jr’ for all
basis elementsr ¢ R, € R',g€ G,¢g € G.

o We have to pick a minimal representative for basis elements on the
shapeir®jr.

y
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Symmetric and Exterior Powers

Definition

The symmetric power S’MisM ® M/(a ® b ~ b ® a); S"M is repeated
application.

The exterior power A2MisM @ M/{(a ® b ~ —b ® a)); A"M is repeated
application.

Generators

S$"M has n-weighted multisets from By as basis elements.
A"M has cardinality n sets from By, as basis elements.

Relations

If M was presented with a Smith normal form, a basis element

{my,mq, ... my}is part of a relation for the common ideal generator of all
relations killing either of the m;.

y
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Applications

Torsion chain complexes

One perennial problem in persistence is how to handle torsion on a chain
level; what if simplices can disappear again?

First solution

Zig-zag homology has provided one solution: vanishing simplices are
modelled with inclusions going the other way. (de Silva, Morozov, Carlsson)

w

Our approach

Torsion in the chain complex can be modelled by allowing non-trivial
relations in the chain complex.

We note that these approaches lead to different results. In particular, our

approach models relative homology. %
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Applications

Relative (co)homology

Classically

Ho(X,A) = H,(C.X/C.A)

Our approach to modeling non-free persistence modules gives us all the
tools necessary to work with a chain complex like C,.X/C,A.

In particular, since 0 is a map of persistence modules C.X/C.A — C.X/C.A,
we can compute cokerker 9 = H.(X,A).
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Unordered input

Inspired by this view-point, we can adapt the classical persistence algorithm
to one that will not require ordered input.
Algorithm: out of order persistence
For each simplex o:
@ Compute do.
@ Reduce do modulo all earlier boundaries
@ Ifdo reduces to 0, then o starts a new cycle. Loop.
(%

Otherwise, do is a new boundary. Find latest simplex 7 in reduced do
and construct the pair (7, o). If 7 was already in a pair (7, v), reduce di)
modulo ¢ and continue the algorithm for 1), reducing later boundary
chains with this new di.

=
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'Thank you!

Any questions?




Full example: relative homology

Consider the space:

d C

We compute the persistent homology of the space itself, relative the blue
edges as they exist at filtration value 1.
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Full example: relative homology

The chain complex is:

ab®ac® ad d bcd cd apbdcdd

abc @ acd — —
© t-ab,t-bc,t-ad,t-cd t-a,t-b,t-c,t-d

The generators module is free of rank 11.

The relations module is free of rank 8, with each generator in degree 1, and
maps the generators to the elementst-ab, ..., t-d.

Degree here means filtration degree, not topological dimension.

<
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Full example: relative homology

The boundary map is a morphism of persistence modules; we can compute

its kernel. For the generators, we reduce:

abc acd ab ac ad bc cd a b c d rn ro r3 rg s rg

abc
acd

a,b,c,dab—ac+bc,ac—ad+cd, rg+t-ab+rs, r7 +t-ac+rs,

rr

rs

rg+t-ad+rs,ry —t-acd —r2 4+ r3 —t - abc are the resulting generators.

M Vejdemo-Johansson (St Andrews)

Algebraic Persistence

19 June 2012

33/30



Full example: relative homology

Projecting onto the chain complex gives us the cycle representatives from
these computed kernel generators:

a,b,c,d,ab —ac+ bc,ac —ad + cd,t-ab,t-ac,t-ad,t-abc+ t - abc

Remains to compute relations for the kernel - the relations for the relative
cycles.
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Full example: relative homology

To compute the relations module for the kernel, we need to reduce the

matrix:
91 92 93 94 95 96 97 9s 99 Y10
abc . . . . . . . t

ab . . . . 1 . t

1

The kernel of this matrix is generated by r;

-9

r3s—1t-gs —9gg+9pnrs—1t-gs—9gg+4dsls —

re —t-Ggo, I7 —1-gs, rg —t-gy.

n

{

rp I3

r2 - ggr
91
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Full example: relative homology

We get the presentation of the relative cycles by combining these two

results; projection onto the generators g, . . ., g, gives us the presentation
map from relations to generators:

kerd — 91,92, --,910
t-91,t-9o,t-g3,t-9y,t- 95 +97 — s, t- g — 9s + 99,97, 99
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Full example: relative homology

For the boundary part, we need to compute the free pullback of the map
from the cycles to the chains with the actual boundary map. This is, again, a
matrix reduction problem:

91 92 93 94 95 9¢ 9r 9s 9Jo 9o abc acd ab ac ad bc cd a b c d
abc [ - - - . . . . . . . e
acd|l - - . . . L.t
ab | - - - 1 -t . . .1 .
ac . . . =1 1 . t - . -1 1
ad . . . . . -1 - . t . . —1
bc | - - - .1 - . . 1.
od e 1T .. . . 1 . . .

a 1 - P . . . 1 1 1

c T
d . . . .

This matrix has kernel g5 — abc, g4 — acd, ab — g, + g5, ac — g, + gs, <o
ad — gy + g4, bc — gy + g3, ¢d — g3 + g €
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Full example: relative homology

Projecting the resulting kernel back into the kernel module, we get the
relations induced from taking the cokernel of the boundary map as

95:96:91 — 92,91 — 93:91 — 94,92 — 93,93 — 94. Adding these to our
known relations, we get a matrix for the presentation map:
pL P2 P3 P4 P55 P6 PT P8 P9 PO PIL P12 P13 P4 PI5
g t . . . . . . . . . 1 1 1
gs . . t - . . . . . . .1 - =11
910 . . . . . . . . . . . . . . . |EaXs
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Full example: relative homology
Computing a Smith normal form of this presentation map, we get:

gl0 .

for clarity. This gives us the non-trivial intervals (0,1) : a + b + c + d,

where we have chosen to ignore the basis change in the relations modul
(1,00) : abc + acd, corresponding to the space chosen.
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