
.

Algebraic Persistence — the algebra of persistence
modules

Mikael Vejdemo-Johansson
joint with Primoz Skraba

School of Computer Science
University of St Andrews

Scotland

4 June 2012

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 1 / 27

.

Persistence and algebra

Outline

...1 Persistence and algebra

...2 Computational representation

...3 Algorithms

...4 Applications

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 2 / 27

.

Persistence and algebra

Persistence modules

Introduced and identiöed by Zomorodian and Carlsson (2005).
.Deŀnition..
......A persistence moduleM is a graded module over the graded ring k[t].

.Connection to persistent homology

..

......
Filtered chain complexes and their persistent homology both are
persistence modules.

A öltered chain complex has a generator in degree n for each simplex
appearing at öltration step n.

A persistent homology module has a generator in degree n killed by tm

for each barcode entry (n, n+m).

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 3 / 27

.

Persistence and algebra

Category of persistence modules

Thus, to study persistent homology, we will beneöt from studying the
category of persistence modules – which by the results by Zomorodian and
Carlsson means studying the category of graded modules over k[t].

Very nice ring. Very nice category. Here are some things that are true:

Euclidean domain. Division algorithm works. Also, therefore PID.

Submodules of free modules are free. All modules have a presentation
by a short exact sequence 0 → R → G → M → 0where R,G are both
freemodules.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 4 / 27

.

Computational representation

Outline

...1 Persistence and algebra

...2 Computational representation

...3 Algorithms

...4 Applications

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 5 / 27

.

Computational representation

Nested modules
Since persistence modules have canonically free presentation, we can
represent a persistence module by tracking the generators and relations.
There are two ways to do this with a global module C of chains:

.Represent chains

..

......

We maintain matrices
representing

G → C and R → C

+ This is the output from
existing algorithms

+ We can work with each
matrix separately

- Larger matrices

.Represent relations embedding

..

......

We maintain matrices
representing

G → C and R → G

+ We have swifter access to the
barcode

- We have to modify both
matrices simultaneously

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 6 / 27

.

Computational representation

Homomorphisms as matrices with conditions

A homomorphism between two modules can be represented by images of
the generators such that boundaries all map to boundaries.

..0. R. G. M. 0.

0

.

R′

.

G′

.

N

.

0

To represent a homomorphismM → N, it is enough to work with a
homomorphism G → G′ known to map relations to relations.

This corresponds to the well-formed map requirement in
Cohen-Steiner, Edelsbrunner, Harer, Morozov:
Persistent Homology for Kernels, Images, and Cokernels.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 7 / 27

.

Algorithms

Outline

...1 Persistence and algebra

...2 Computational representation

...3 Algorithms

...4 Applications

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 8 / 27

.

Algorithms

Normal forms, equality, and membership
.Question
..
......How can we determine equality for two elements ofM = G/R?

.Question

..

......

How can we determine whether z ∈ C represents an element of
M = G/R?

.Question

..

......How can we determine whether z ∈ G represents an element of R?

.Question

..

......How do we produce bases for G and R that make computation easy?

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 9 / 27

.

Algorithms

Normal forms, equality, and membership
.
Answer..
......A Gröbner basis comes with extensive computational guarantees.

Reduction modulo a Gröbner basis, in any order, until no more pivots
(leading elements) apply is guaranteed to provide a normal form. Normal
form equal to 0 implies membership. Equal normal form implies equality
(modulo the Gröbner basis).

For modules over a öeld k, a Gröbner basis is equivalent to a reduced
echelon form (REF).
.Helpful fact
..

......
The ring k[t] is sufficiently much like a öeld – a Gröbner basis of
graded modules is also equivalent to a reduced echelon form.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 10 / 27

.

Algorithms

Normal forms, equality, and membership

We shall want to maintain G and Rwith bases and normal form such that R is
always represented by a REF, and G is always reduced with respect to R.

We can avoid redundancy by keeping a basis for G reduced to a REF as well.

This is in particular important since the persistence algorithm itself works
with a membership test in the relations module as the fundamental step.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 11 / 27

.

Algorithms

Graded Smith normal form

There is a way to compute a Smith Normal Form in a graded sense.
.Properties of a Graded Smith Normal Form
..

......

Rows are ordered by increasing degree

Columns are ordered by increasing degree

Each row has at most one non-zero entry

Each column has at most one non-zero entry

Lower degree entries divide all higher degree entries

Strictly speaking, this is a permutation of the classical Smith Normal Form.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 12 / 27

.

Algorithms

Graded Smith normal form

Core feature:
.Computability
..

......

We can compute a Graded Smith Normal Form by reducing rows and
columns in increasing order of degree. Thus we can compute it compatibly
with the gradings present.

.Conditions..

......

To do this, we require the coefficients to come from a graded principal ideal
domain. k[t] fulölls this requirement.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 13 / 27

.

Algorithms

SNF and barcodes

Why should we care about Smith normal forms?
.Persistence modules and barcodes..

......

A graded Smith normal form of the inclusion map R → G is the same thing
as a barcode ofM = G/R.

.Proof sketch..

......

A graded Smith normal form is a simultaneous basis choice of R and G
such that each basis element of Rmaps onto a k[t]-multiple of a basis
element of G.
This is exactly what produces a barcode: bases for cycles and
boundaries such that each boundary basis element kills exactly one
cycle basis element.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 14 / 27

.

Algorithms

Free kernels and intersections

One technique that will show up a lot in the subsequent constructions is to
compute a kernel of a map between free modules. This is done using a REF
computation:

Reduce the matrix of the map to a REF, tracking the operations
performed.

Operation combinations corresponding to 0-rows are generators of the
kernel.

This can be used to computeM ∩ NwhereM,N are free submodules of
some free module C. The mapM⊕ N → C given by (m, n) 7→ m− n has a
kernel consisting of pairs (m, n) such thatm = n in C. Projecting onto one
factor gives a basis for the intersection.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 15 / 27

.

Algorithms

Illustration

M = G/R and N = G′/R′.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 16 / 27

.

Algorithms

Illustration

f : M → N represented by ϕ : G → G′ such that ϕ(R) ⊂ R′.

We shall be illustrating the various constructions based on this ögure.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 17 / 27

.

Algorithms

Image

f : M → N represented by ϕ : G → G′ such that ϕ(R) ⊂ R′.

Compute ϕ(g) for each basis element g ∈ G.
Reduce images modulo the REF for R′.

These are the generators for im f.

For the relations, we need to compute a basis for G′ ∩ ϕ(R). This is done
with another REF computation.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 18 / 27

.

Algorithms

Cokernel

f : M → N represented by ϕ : G → G′ such that ϕ(R) ⊂ R′.

Compute ϕ(g) for each basis element g ∈ G.
Reduce the basis of G′ by the images ϕ(g).

This gives you generators for coker f. The relations are those in R together
with all the images ϕ(g).

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 19 / 27

.

Algorithms

Kernel

f : M → N represented by ϕ : G → G′ such that ϕ(R) ⊂ R′.

Computing the kernel is a two-step process. One step computes the
generators, and the next step computes the relations.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 20 / 27

.

Algorithms

Kernel (Step 1: Generators)

f : M → N represented by ϕ : G → G′ such that ϕ(R) ⊂ R′.

Generators are the basis of a kernel of the map G⊕ R′ → G′ given by
(g, r) 7→ ϕ(g)− r. Project onto the örst factor to get an embedding into G.
Call these kernel generators K, and the projection i : K → G.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 21 / 27

.

Algorithms

Kernel (Step 2: Relations)

f : M → N represented by ϕ : G → G′ such that ϕ(R) ⊂ R′.

Relations are the basis of a kernel of the map K⊕ R → G given by
(k, r) 7→ i(k)− r. The projection onto K is the inclusion map of relations into
generators for the kernel.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 22 / 27

.

Algorithms

Pushouts and pullbacks

If you know enough category theory, you’ll recognize this ker(A⊕ B → C)
pattern as being a pullback. These descriptions above provide all tools
necessary to compute both pullbacks and pushouts, even for torsion
persistence modules:

Pullback Given f : A → C and g : B → C, the pullback is
ker((a, b) 7→ f(a)− g(b)).

Pushout Given f : A → B and g : A → C, the pushout is
coker(a 7→ (f(a), g(a)).

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 23 / 27

.

Applications

Outline

...1 Persistence and algebra

...2 Computational representation

...3 Algorithms

...4 Applications

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 24 / 27

.

Applications

Torsion chain complexes

One perennial problem in persistence is how to handle torsion on a chain
level; what if simplices can disappear again?
.First solution..

......

Zig-zag homology has provided one solution: vanishing simplices are
modelled with inclusions going the other way. (de Silva, Morozov, Carlsson)

.Our approach

..

......
Torsion in the chain complex can be modelled by allowing non-trivial
relations in the chain complex.

We note that these approaches lead to different results. In particular, our
approach models relative homology.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 25 / 27

.

Applications

Relative (co)homology

.Classically

..

...... H∗(X;A) = H∗(C∗X/C∗A)

Our approach to modeling non-free persistence modules gives us all the
tools necessary to work with a chain complex like C∗X/C∗A.

In particular, since ∂ is a map of persistence modules C∗X/C∗A → C∗X/C∗A,
we can compute coker ker ∂ = H∗(X;A).

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 26 / 27

.

Applications

Unordered input

Inspired by this view-point, we can adapt the classical persistence algorithm
to one that will not require ordered input.
.
Algorithm: out of order persistence
..

......

For each simplex σ:
...1 Compute dσ.
...2 Reduce dσmodulo all earlier boundaries
...3 If dσ reduces to 0, then σ starts a new cycle. Loop.
...4 Otherwise, dσ is a new boundary. Find latest simplex τ in reduced dσ

and construct the pair (τ, σ). If τ was already in a pair (τ, ψ), reduce dψ
modulo σ and continue the algorithm for ψ.

M Vejdemo-Johansson (St Andrews) Algebraic Persistence 4 June 2012 27 / 27

	Persistence and algebra
	Computational representation
	Algorithms
	Applications

