Computation of spectral sequences of double complexes with applications to persistent homology

Mikael Vejdemo-Johansson joint with David Lipsky, Dmitriy Morozov, Primoz Skraba

> School of Computer Science University of St Andrews Scotland

Stanford Symposium
Algebraic Topology: Applications and New Directions

Outline

Spectral sequence of a double complex

2 Higher differentials

3 Extension problem over k[t]

4 Applications to persistent homology

Double complex

Fix some nice commutative ring R. Everything in this talk will take place in $R-\mathrm{Mod}$; maybe $R-\mathrm{gr}\mathrm{Mod}$.

Definition

Let $C_{*,*}$ be a bigraded module over R. $C_{*,*}$ is a double complex if there are maps $d': C_{*,*} \to C_{*-1,*}$ and $d'': C_{*,*} \to C_{*,*-1}$ such that d'd' = 0, d''d'' = 0 and d'd'' + d''d' = 0.

Total complex

Definition

If $C_{*,*}$ is a double complex, $\operatorname{Tot}(C)$ is a chain complex

$$Tot(C)_n = \bigoplus_{p+q=n} C_{p,q}$$

with differential d = d' + d''.

CCM-fest

Spectral sequence

For every double complex $C_{*,*}$, there are two spectral sequences with $E^0 = C_{*,*}$.

Horizontal spectral sequence

 $d^0 = d'$. d^1 induced from d''.

Vertical spectral sequence

 $d^0 = d''$. d^1 induced from d'.

Homology of the total complex (Godement, 1958)

For each of these spectral sequences, the E^{∞} -page is the graded associated module of a filtration on $H_*(\operatorname{Tot}(C))$.

How do we compute this?

Bott and Tu

Gives a few fundamental results; in a de Rham cohomology context.

Godement

Gives some theorems, does not give higher differentials.

McCleary

Gives some theorems, no explicit higher differentials.

Brown

Has double complex s.s. as an example. Higher differentials are "hard".

MacLane

Gives some theorems on the double complex, no explicit higher differentials.

Outline

1) Spectral sequence of a double complex

2 Higher differentials

3 Extension problem over k[t]

4 Applications to persistent homology

Independent definition of cycles and boundaries

$$Z_{p,q}^r$$

Consists of α_p such that there are $\alpha_{p-1},\ldots,\alpha_{p-r}$ fulfilling equations

$$\mathbf{d}^0 \alpha_p = 0$$
 $\mathbf{d}^0 \alpha_{p-1} = \mathbf{d}^1 \alpha_p$... $\mathbf{d}^0 \alpha_{p-r} = \mathbf{d}^1 \alpha_{p-r+1}$

 $B_{p,q}^r$

Consists of α_p such that there are $\beta_p, \beta_{p+1}, \dots, \beta_{p+r}$ fulfilling equations

$$d^{0}\beta_{p} + d^{1}\beta_{p+1} = \alpha_{p}$$
 $d^{0}\beta_{p+2} = d^{1}\beta_{p+1}$... $d^{0}\beta_{p+r-1} = d^{1}\beta_{p+r}$

Partial collection of conditions on $(\alpha_0,\alpha_1,\ldots,\alpha_p,0,\ldots,0)$ being a cycle in $\mathrm{Tot}(\mathcal{C})$; and on it being a boundary.

Fundamental computational steps

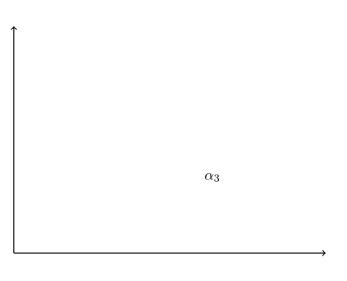
The higher differentials are decomposed into smaller computational steps:

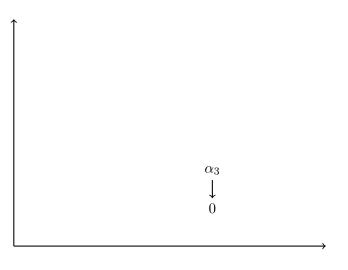
Across

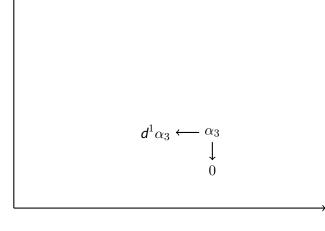
 $v \in Z_{p,q}^r$ maps by a map induced from d^1 to $d^1v \in Z_{p-1,q}^r$.

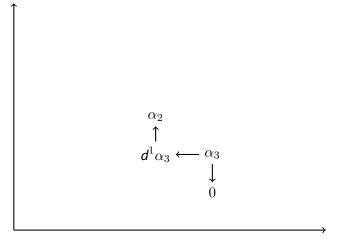
Up

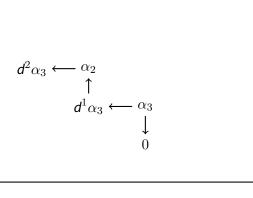
 d^0 has sections over $\mathcal{B}^1_{p,q}$. Hence, for $r \geq 1$, $w \in \mathcal{B}^r_{p,q}$ maps by a map induced from d^0 to $(d^0)^{-1}w \in \mathcal{Z}^r_{p,q+1}$.

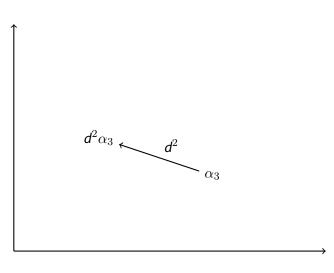


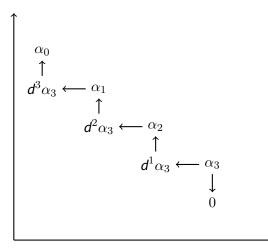


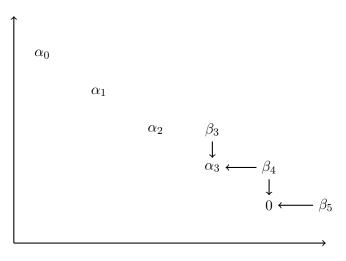












Outline

Spectral sequence of a double complex

2 Higher differentials

3 Extension problem over k[t]

4 Applications to persistent homology

Primer on persistence language

persistence module graded module over k[t]

barcode decomposition of a persistence module into free and torsion summands

Smith normal form is unreasonably effective for $\Bbbk[t]$ – no GCD computations needed; lowest degree immediately implies divisibility.

Representative chains in Tot(*C*)

 E^{∞} has a basis on the shape

$$\phi(\alpha_{p}) = (\alpha_{0}, \dots, \alpha_{p-1}, \alpha_{p}, 0, \dots, 0)$$

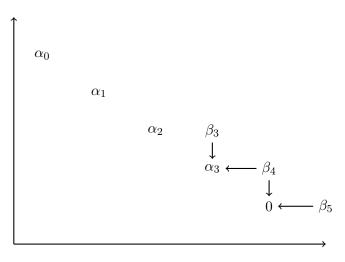
Write A_p for such α in $E_{p,a}^{\infty}$.

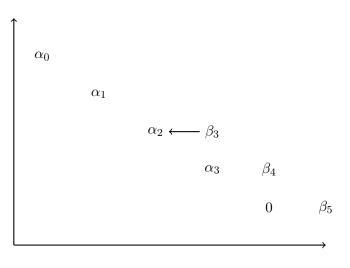
Problem

 $t^{s}\alpha_{p} \in \mathcal{B}_{p,q}^{\infty}$ does not necessarily mean $\phi(t^{s}\alpha_{p}) = 0$.

So behavior of barcodes for α_p is different from behavior of barcodes for $\phi(\alpha_p)$.

 α_0 α_1 α_2 α_3 0





Consider

$$\phi(\alpha_{\mathbf{p}}) = (\phi_0(\alpha_{\mathbf{p}}), \dots, \phi_{\mathbf{p}-1}(\alpha_{\mathbf{p}}), \alpha_{\mathbf{p}}, 0, \dots, 0)$$

Suppose

$$t^{s}\alpha_{p}\in B^{\infty}$$

There is some element

$$\beta = (0, \dots, \beta_p, \dots, \beta_n)$$

Such that

$$\phi(t^{\mathfrak{s}}\alpha_{p}) - \mathsf{D}\beta = (t^{\mathfrak{s}}\phi_{0}(\alpha), \dots, t^{\mathfrak{s}}\phi_{p-1}(\alpha) - \mathsf{d}^{1}\beta_{p}, 0, \dots, 0)$$

Express this result with our preferred basis:

$$t^{s}\phi(\alpha) - D\beta = (t^{s}\phi_{0}(\alpha), \dots, t^{s}\phi_{p-1}(\alpha) - d^{1}\beta_{p}, 0, \dots, 0)$$
$$= \sum_{\alpha' \in A_{n-1}} c'\phi(\alpha') + \sum_{\alpha'' \in A_{n-2}} c''\phi(\alpha'') + \dots + \sum_{\alpha^{(n)} \in A_{0}} c^{(n)}\phi(\alpha^{(n)})$$

Collect all these $c', c'', \ldots, c^{(n)}$ into a matrix. This matrix gives relations for $H_*(\operatorname{Tot}(C))$.

Smith normal form on this presentation matrix gives global barcodes.

Outline

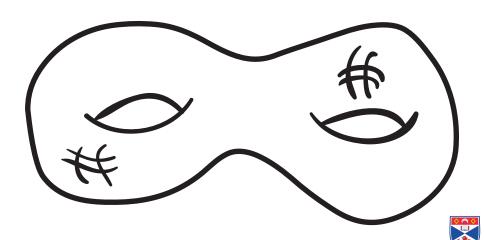
Spectral sequence of a double complex

2 Higher differentials

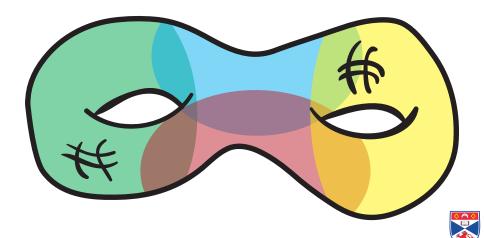
3 Extension problem over k[t]

4 Applications to persistent homology

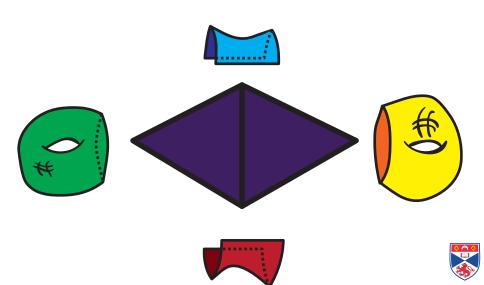
Mayer-Vietoris spectral sequence



Mayer-Vietoris spectral sequence



Mayer-Vietoris spectral sequence



Double complex

ith column Chain complex of all i-fold intersections
vertical differential Boundary in chain complex
horizontal differential Inclusion of deeper intersection into more shallow;
coefficient from Čech complex boundary.

Generalizes the Mayer-Vietoris long exact sequence.

Theorem

This double complex computes H_*X using only a cover of X.

Proof sketch (following Brown; also Segal)

$$C_{2} \bigsqcup_{\sigma} \bigcap_{j=0}^{0} U_{\sigma_{j}} \leftarrow C_{2} \bigsqcup_{\sigma} \bigcap_{j=0}^{1} U_{\sigma_{j}} \leftarrow C_{2} \bigsqcup_{\sigma} \bigcap_{j=0}^{2} U_{\sigma_{j}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C_{1} \bigsqcup_{\sigma} \bigcap_{j=0}^{0} U_{\sigma_{j}} \leftarrow C_{1} \bigsqcup_{\sigma} \bigcap_{j=0}^{1} U_{\sigma_{j}} \leftarrow C_{1} \bigsqcup_{\sigma} \bigcap_{j=0}^{2} U_{\sigma_{j}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_{0} \bigsqcup_{\sigma} \bigcap_{j=0}^{0} U_{\sigma_{j}} \leftarrow C_{0} \bigsqcup_{\sigma} \bigcap_{j=0}^{1} U_{\sigma_{j}} \leftarrow C_{0} \bigsqcup_{\sigma} \bigcap_{j=0}^{2} U_{\sigma_{j}}$$

Theorem

This double complex computes H_*X using only a cover of X.

Proof sketch (following Brown; also Segal)

$$C_{2}X \longleftarrow C_{2} \bigsqcup_{\sigma} \bigcap_{j=0}^{0} U_{\sigma_{j}} \leftarrow C_{2} \bigsqcup_{\sigma} \bigcap_{j=0}^{1} U_{\sigma_{j}} \leftarrow C_{2} \bigsqcup_{\sigma} \bigcap_{j=0}^{2} U_{\sigma_{j}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C_{1}X \longleftarrow C_{1} \bigsqcup_{\sigma} \bigcap_{j=0}^{0} U_{\sigma_{j}} \leftarrow C_{1} \bigsqcup_{\sigma} \bigcap_{j=0}^{1} U_{\sigma_{j}} \leftarrow C_{1} \bigsqcup_{\sigma} \bigcap_{j=0}^{2} U_{\sigma_{j}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C_{0}X \longleftarrow C_{0} \bigsqcup_{\sigma} \bigcap_{j=0}^{0} U_{\sigma_{j}} \leftarrow C_{0} \bigsqcup_{\sigma} \bigcap_{j=0}^{1} U_{\sigma_{j}} \leftarrow C_{0} \bigsqcup_{\sigma} \bigcap_{j=0}^{2} U_{\sigma_{j}}$$

Augment double complex

Theorem

This double complex computes H_*X using only a cover of X.

Proof sketch (following Brown; also Segal)

$$C_2X \longleftarrow C_2 \bigsqcup_{\sigma} \bigcap_{j=0}^0 U_{\sigma_j} \leftarrow C_2 \bigsqcup_{\sigma} \bigcap_{j=0}^1 U_{\sigma_j} \leftarrow C_2 \bigsqcup_{\sigma} \bigcap_{j=0}^2 U_{\sigma_j}$$

$$C_1X \longleftarrow C_1 \bigsqcup_{\sigma} \bigcap_{j=0}^0 U_{\sigma_j} \leftarrow C_1 \bigsqcup_{\sigma} \bigcap_{j=0}^1 U_{\sigma_j} \leftarrow C_1 \bigsqcup_{\sigma} \bigcap_{j=0}^2 U_{\sigma_j}$$

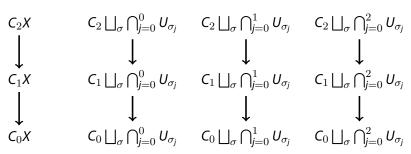
$$C_0X \longleftarrow C_0 \bigsqcup_{\sigma} \bigcap_{j=0}^0 U_{\sigma_j} \leftarrow C_0 \bigsqcup_{\sigma} \bigcap_{j=0}^1 U_{\sigma_j} \leftarrow C_0 \bigsqcup_{\sigma} \bigcap_{j=0}^2 U_{\sigma_j}$$

Resolution (in chain complexes) – because any simplex $\sigma \in C_*X$ is $\sigma \times \Delta^k$ in the double complex. Thus: associated graded $H_*\mathrm{Tot} = 0$.

Theorem

This double complex computes H_*X using only a cover of X.

Proof sketch (following Brown; also Segal)

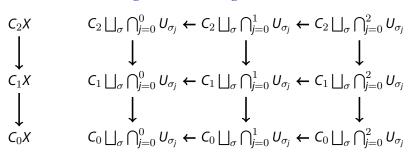


Associated graded $H_*Tot = 0$ does not change with a change in filtration.

Theorem

This double complex computes H_*X using only a cover of X.

Proof sketch (following Brown; also Segal)



Because resolution: removing augmentation yields quasi-isomorphism.

Parallel/distributed computation of persistent homology

Strategy

Divide a filtered simplicial complex X into a cover of filtered simplicial subcomplexes U_i .

Conquer by merging all $H_*(\bigcap_i U_i)$ using the Mayer-Vietoris spectral sequence.

21/24

Parallel/distributed computation of persistent homology

Problems

We need to build tools for efficient computation.

Hope

Algorithm asymptotically equally fast as persistent homology; but with memory consumption guarantees.

Results

Achieved this for the two-column case – deepest intersection pairwise.

Note: persistence can run in $O(nm^2)$ time; for n simplices, m cycles. We can now achieve $O(n^2m)$ for the two-column case.

Matrix fill-in and distributed module algebra our hardest problems.

More spectral sequences persistently

Results summary

- Explicit higher differentials for double complex spectral sequences
- Explicit extensions for persistence modules

Serre spectral sequences

Dress (1967) constructs the Serre spectral sequence as a double complex spectral sequence.

- All higher differentials follow
- Applicability in persistence follows
- Open question: how do we make this finite enough?

Thank you

Happy birthdays!

to Gunnar Carlsson, Ralph Cohen, and Ib Madsen

Acknowledgements

- Research joint with Dmitriy Morozov (Lawrence Berkeley Lab), Primoz Skraba (Jozef Stefan Institute), David Lipsky (University of Pennsylvania)
- My own research funded by EPSRC in the HPC-GAP project
- Input and discussions with Gunnar Carlsson, Robert Ghrist, Stephen Linton, Wojciech Chacholski

Ouestions?

