Parallelizing zigzag persistence

Mikael Vejdemo-Johansson

Royal Institute of Technology
Stockholm, Sweden

16 October 2012
Outline

1. Zigzag persistence

2. Pullbacks and Parallelization

3. Implemented algorithm

4. Getting rid of linearity
Persistent homology

Classical persistence

A diagram of spaces

\[X_0 \leftrightarrow X_1 \leftrightarrow \ldots \leftrightarrow X_n \]

produces a diagram of homology groups

\[H_*X_0 \rightarrow H_*X_1 \rightarrow \cdots \rightarrow H_*X_n \]

Decomposes (over a field) into intervals of 1-dimensional spaces with identity maps.
Zigzag persistence

But what if spaces do not include cleanly? What if simplices appear and disappear?

Zigzag homology

Diagram of Dynkin type A_n; arrows can take arbitrary directions.

\[X_0 \leftrightarrow X_1 \leftrightarrow \ldots \leftrightarrow X_n \]

produces

\[H_*X_0 \rightarrow H_*X_1 \leftrightarrow \cdots \rightarrow H_*X_n \]

Gabriel (1970) proved that these, too, decompose into intervals of 1-dimensional spaces with identity maps.
Union zigzag

Carlsson & de Silva introduced zigzag persistence, and described a bootstrap type technique:

Union zigzag

Suppose X_1, \ldots, X_n are approximations of a space X. The zigzag diagram:

```
X_1 U X_2 \leftarrow X_2 \rightarrow X_2 U X_3 \leftarrow X_3 \rightarrow X_3 U X_4 \leftarrow X_4
```

gives rise to a topological style bootstrap: topological features that are artifacts of the approximations live locally; features that are in X exist everywhere.
Bootstrap example
Bootstrap example
Previous zigzag algorithm

Morozov already presented a parallelizable but different algorithm for computing zigzag persistent homology.

Basic formulation

Examines the act of adding and removing a simplex, demonstrates how these primitive operations influence the results.

Advanced formulation

This can be recast into essentially a matrix multiplication, on the order of \# insertions and deletions of simplices.

For the bootstrap case, this is prohibitively expensive. Other use cases, this is close to optimal.
Outline

1. Zigzag persistence
2. Pullbacks and Parallelization
3. Implemented algorithm
4. Getting rid of linearity
Pullbacks of linear maps

Pullbacks in category theory

The pullback P of two maps $A \xrightarrow{f} C \xleftarrow{g} B$ is a least specific object with maps to A and B such that the diagram commutes.

Pullbacks in vector spaces

The pullback has a particularly easy formulation in the category of vector spaces: P is the subspace of $A \oplus B$ where the maps agree:

$$P = \{(a, b) \in A \oplus B : fa = gb\}$$
Pullbacks can compute zigzags

The key recognition here is that the pullback computes the subspace where functions agree.

Consider the diagram, where all maps are induced from inclusions:

\[
\begin{array}{ccc}
H_*(X_1 \cup X_2) & \rightarrow & H_*X_1 \\
\downarrow & & \downarrow \\
H_*X_2 & \leftarrow & H_*X_2 \\
\end{array}
\]
Pullbacks can compute zigzags

The key recognition here is that the pullback computes the subspace where functions agree.

Consider the diagram, where all maps are induced from inclusions:

\[
\begin{align*}
H_*(X_1 \cup X_2) & \\
\Rightarrow & \\
H_*X_1 & \quad H_*X_2 \\
\Rightarrow & \\
P & \!
\end{align*}
\]

Basis vectors of \(P\) encode classes in \(H_*X_1\) and \(H_*X_2\) that agree, up to homology, in \(X_1 \cup X_2\).
Algorithm overview

$$H_*(X_1 \cup X_2) \quad H_*(X_2 \cup X_3) \quad H_*(X_3 \cup X_4) \quad H_*(X_4 \cup X_5)$$

$$H_*(X_1) \quad H_*(X_2) \quad H_*(X_3) \quad H_*(X_4) \quad H_*(X_5)$$
Algorithm overview

$H_*(X_1 \cup X_2) \quad H_*(X_2 \cup X_3) \quad H_*(X_3 \cup X_4) \quad H_*(X_4 \cup X_5)$

\downarrow \leftarrow \downarrow \leftarrow \downarrow \leftarrow

H_*X_1 H_*X_2 H_*X_3 H_*X_4 H_*X_5

\uparrow \rightarrow \uparrow \rightarrow \uparrow \rightarrow

P_{12} P_{23} P_{34} P_{45}
Algorithm overview

\[H_*(X_1 \cup X_2) \quad H_*(X_2 \cup X_3) \quad H_*(X_3 \cup X_4) \quad H_*(X_4 \cup X_5) \]

- \(H_*X_1 \)
- \(H_*X_2 \)
- \(H_*X_3 \)
- \(H_*X_4 \)
- \(H_*X_5 \)

- \(P_{12} \)
- \(P_{23} \)
- \(P_{34} \)
- \(P_{45} \)
- \(P_{13} \)
- \(P_{24} \)
- \(P_{35} \)
Algorithm overview

\[H_*(X_1 \cup X_2) \quad H_*(X_2 \cup X_3) \quad H_*(X_3 \cup X_4) \quad H_*(X_4 \cup X_5) \]

\[H_*X_1 \quad H_*X_2 \quad H_*X_3 \quad H_*X_4 \quad H_*X_5 \]

\[P_{12} \quad P_{23} \quad P_{34} \quad P_{45} \]

\[P_{13} \quad P_{24} \quad P_{35} \]

\[P_{14} \quad P_{25} \]
Algorithm overview

\[H_*(X_1 \cup X_2) \quad H_*(X_2 \cup X_3) \quad H_*(X_3 \cup X_4) \quad H_*(X_4 \cup X_5) \]

\[\arrow{H_*X_1} \quad \arrow{H_*X_2} \quad \arrow{H_*X_3} \quad \arrow{H_*X_4} \quad \arrow{H_*X_5} \]

\[\arrow{P_{12}} \quad \arrow{P_{23}} \quad \arrow{P_{34}} \quad \arrow{P_{45}} \]

\[\arrow{P_{13}} \quad \arrow{P_{24}} \quad \arrow{P_{35}} \]

\[\arrow{P_{14}} \quad \arrow{P_{25}} \]

\[\arrow{P_{15}} \]
Algorithm overview

1. Compute all homology groups.
2. Compute all induced maps $H_*X_i \rightarrow H_*(X_i \cup X_j)$.
3. Compute pullbacks repeatedly until all layers processed.
4. Compute cokernels of the pullback maps.
 This picks out generators where they take effect.
Outline

1. Zigzag persistence
2. Pullbacks and Parallelization
3. Implemented algorithm
4. Getting rid of linearity
Sample code

A serial implementation in GAP with comment annotations for parallelization with HPC-GAP exists.

Access with Mercurial: hg://hg.gap-system.org/geometry

Annotated code resides in hpczz.g

Shared but provably disjoint array write access. Shared array read access.
The functionality is parametrized on:

- A sequence of pointclouds pts.
- A globally chosen Vietoris-Rips radius eps.
- A globally chosen top interesting dimension d.
- Some field $field$.

Code: Assumptions
Homology setup

Computing homology is embarrassingly parallel; no dependencies between the spaces. ParList or dependency-free task launches. Needs to be done both for each single space, and each union of neighbouring spaces.

SpaceKernel := function(array, index, pts)
 local graph, complex;

 graph := VietorisRipsGraph(pts, eps);
 cpx := VietorisRipsIncremental(graph, d);
 array[index] := rec(cc := CreateChainComplex(cpx, field),
 spxs := cpx,
 graph := graph);
end;
Inclusion maps setup

This step is specific to the union zigzag; assumptions on vertex numbering come from how unions are coded. Step index depends on the SpaceKernel for index and index+1.

UnionKernel := function(array, index, spaces, unions)
 local uu;

 uu := CreateUnion(spaces[index].spxs,
 spaces[index].graph.nV,
 spaces[index+1].spxs,
 unions[index].spxs,
 field);

 array[index].right := uu[1];
 array[index+1].left := uu[2];
end;
Homology computation

Homology computation locally is still internally dependency-free; but relies on the corresponding SpaceKernel having finished.

HomologyKernel := function(array, index, spaces)
 local p, h, z;
 p := NaturalHomomorphismBySubspace(
 Kernel(spaces[index].cc),
 Image(spaces[index].cc));
 h := Image(x1p);
 z := List(Basis(x1h), v -> PreImagesRepresentative(x1p, v));
 array[index].space := h;
 array[index].cycles := z;
 array[index].proj := p;
end;
Induced maps

CreateMap := function(from, to, unionmap, proj)
 return LeftModuleHomomorphismByImages(
 from.space, to.space, Basis(from.space), List(List(from.cycles,
 v -> Image(unionmap, v)), w -> Image(proj, w)));
end;

HomologyMapKernel := function(array, idx, state)
 local f, g, sl;
 sl := state.layers; f := fail; g := fail;
 if index < Length(array) then
 f := CreateMap(sl[2][idx], sl[1][idx],
 state.unionmaps[idx][1], sl[1][idx].proj);
 fi;
 if index > 1 then
 g := CreateMap(sl[2][idx], sl[1][idx],
 state.unionmaps[idx-1][2], sl[1][idx-1].proj);
 fi;
 array[index].left := g; array[index].right := f;
end;
Pullbacks

The function here is almost trivial; but the dependency structure more intricate.

PullbackKernel := function(state, depth, index)
 state.layers[depth][index] := Pullback(
 state.layers[depth-1][index].right,
 state.layers[depth-1][index+1].left);
end;

The depth/index invocation of the PullbackKernel depends on the PullbackKernel invocation for depth-1/index and index+1.

The first layer depends on the correspondingly indexed induced maps having been computed.
A final step, for a nice and complete presentation, is to compute cokernels, isolating the essential content of the computed barcode.

```
CokernelKernel := function(state, depth, index)
    local quot, hf, hh;
    quot := Subspace(state.layers[depth][index].space, []);
    if index <> Length(state.layers[depth]) then
        quot := quot + ImagesSet(state.layers[depth+1][index].left,
                                  state.layers[depth+1][index].space);
    fi;
    if index <> 1 then
        quot := quot + ImagesSet(state.layers[depth+1][index-1].right,
                                  state.layers[depth+1][index-1].space);
    fi;
    hf := NaturalHomomorphismBySubspace(
        state.layers[depth][index].space,
        quot);
    hh := Image(hf);
    state.zz[depth][index].hf := hf;
    state.zz[depth][index].hh := hh;
end;
```
Outline

1. Zigzag persistence
2. Pullbacks and Parallelization
3. Implemented algorithm
4. Getting rid of linearity
Logarithmic time; assuming quadratic resources

\[X_1 \rightarrow X_{12} \leftarrow X_2 \rightarrow X_{23} \leftarrow X_3 \rightarrow X_{34} \leftarrow X_4 \rightarrow X_{45} \leftarrow X_5 \rightarrow X_{56} \leftarrow X_6 \rightarrow X_{67} \leftarrow X_7 \]
Logarithmic time; assuming quadratic resources
Logarithmic time; assuming quadratic resources
Logarithmic time; assuming quadratic resources

\[
\begin{align*}
&X_{12} &X_{23} &X_{34} &X_{45} &X_{56} &X_{67} \\
&X_1 &X_2 &X_3 &X_4 &X_5 &X_6 &X_7 \\
&P_{12} &P_{23} &P_{34} &P_{45} &P_{56} &P_{67} \\
&P_{13} &P_{24} &P_{35} &P_{46} &P_{57} \\
&P_{14} &P_{25} &P_{36} &P_{47} \\
&P_{15} &P_{26} &P_{37} \\
&P_{16} &P_{27} \end{align*}
\]
Logarithmic time; assuming quadratic resources
Logarithmic time; assuming quadratic resources
Logarithmic time; assuming quadratic resources
Complexity analysis

Assume n spaces; $n - 1$ unions. Largest space has m simplices. Suppose that b_k is the upper bound on the number of classes persisting at least k steps.

Homology computation Time $O(m^\omega)$. Processors $2n - 1$.

Maps computation Time $O(m^\omega)$. Processors $2n - 2$.

Pullbacks, 1st round Time $O(b_1^\omega)$. Processors $n - 1$.

Pullbacks, 2nd round Time $O(b_2^\omega + b_3^\omega)$. Processors $(n - 2) + (n - 3)$.

Pullbacks, kth round Time $O(\sum_{i=2}^{2^k-1} b_i^\omega)$. Processors $\sum_{i=2}^{2^k-1} n - i$.

The computation ends after $\lceil \log_2 n \rceil$ rounds.

ω is the exponent of matrix multiplication complexity.