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Shape of data
What is data?

Data is a collection of observations.

http://en.wikipedia.org/wiki/Data_analysis gives three
commonly used categories:

Quantitative Measured by some (real) number.
Categorical Assigned to one of several possible categories.

Qualitative Measured by presence or absence of some
characteristic.

A datum will be some collection of such observations. There are
interesting metrics for all, which allows us to define:

A data set is a finite metric space.


http://en.wikipedia.org/wiki/Data_analysis

Shape of data

Fundamentally, data analysis is the task of describing the shape of
data:

Tasks of data analysis

Summarize Provide a description that is, preferably, smaller than
the dataset.
Model Provide a description that allows for predictions of the
behaviour of the source of the data.
Highlight Provide emphasis on certain interesting properties of
the data.



Shape of data

Fundamentally, data analysis is the task of describing the shape of
data:

Fundamental data analysis techniques
Mean (centroid) tells us where the data is located.
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Shape of data

Fundamentally, data analysis is the task of describing the shape of
data:

Fundamental data analysis techniques
Standard deviation tells us how spread out the data is.



Shape of data

Fundamentally, data analysis is the task of describing the shape of
data:

Fundamental data analysis techniques
Regression analyses fit the data to an easy to analyze model.



Shape of data

Fundamentally, data analysis is the task of describing the shape of
data:

Fundamental data analysis techniques
Cluster analysis divides the data into its connected components.
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Shape of data

Fundamentally, data analysis is the task of describing the shape of
data:

Fundamental data analysis techniques

Principal Component Analysis (and other dimension reduction
techniques) give a new coordinate frame that more faithfully
represent the data.
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Wherefore topology?

Issues with classical data analysis

Unreliable metric The metrics in use may well not be accurate
measures of dissimilarity as distances grow.

Il motivated metric The metrics in use may be arbitrarily chosen,
not well anchored as distances grow.

Noisy data Data may be very noisy.

High-dimensional data Data may be very high-dimensional, and
thus slow to process.

Topology only depends on a notion of nearness. Produces
dimension-agnostic qualitative features.



Fundamental technique: Homology

One major tool for describing these shapes comes from topology:

The ith homology with coefficients in a field k assigns to a
topological space X a vector space H;(X; k).

Easiest description is through Betti numbers 3; = dimy H;(X; k).
Counts the number of i-dimensional voids. (almost)

Pleasant to use because computable with matrix arithmetic.



Homology — intuitively
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Continuous made discrete

Definition

A simplicial complex is a family of
simplices: vertices, edges,
triangles, tetrahedra, ...- such
that any two simplices intersect
in a subsimplex.

Definition

An abstract simplicial complex is
a family of subsets of a given set
V, such that all subsets of a
member are members.
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Discrete made continuous

Definition

The Vietoris-Rips complex is an

abstract simplicial complex .
VR.(X) for ¢ € Ry and X a finite

metric space: ¢

* Contains one vertex for each
elementin X.

* Contains a simplex ¢ .
(X0, - .., xx) exactly when
d(x,d;) < eforalli,j € [K].
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Discrete made continuous

Definition

The Vietoris-Rips complex is an
abstract simplicial complex
VR.(X) for ¢ € Ry and X a finite
metric space:

« Contains one vertex for each
elementin X.
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d(x;,d;) < eforalli,j e [k].




Functoriality and persistent homology
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Functoriality and persistent homology
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Functoriality and persistent homology
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Functoriality and persistent homology
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Functoriality and persistent homology

Homology is a functor: if f : X — Yis a function, there is an induced
function H.(f) : H.X — H.Y.

If = < £/, then VR-(X) C VR (X).

Definition

The persistent homology space Hy® (VR.(X)) is the subspace of the
vector space H,(VR. (X)) consisting of the image of the induced
map Hn(VRs(X)) — Hn(VRE’ (X>)



Barcodes

We can summarize, pictorially, the collection of persistent
homology spaces as a barcode.

Definition

The persistence barcode for a filtered complex VR, (X) is a collection
of pairs (s, t).

(s, t) is in the barcode if there is a basis element of H;;'(VR..(X)) not
in Hy, =Y (VR (X)) norin H;™™ (VR.(X)).

s and t can take values in positive reals, and oc.

The dendrogram of single linkage clustering is (almost) exactly the
barcode for H.



Delay embedding quality

Delay Embedding

{ax} — {(ax; Axtey - - 7ax+(d71)5}

Converts a 1-dimensional signal into a d-dimensional signal.
Problem
Choose appropriate parameters ¢, d.

Topology helps for periodic signals: closed curves are embeddings
of S, recognizable by Betti numbers.



Detecting good delay embeddings
(de Silva—Skraba—V])

Clarinet middle E tone in R2:
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Detecting good delay embeddings
(de Silva—Skraba—V])

Clarinet middle E tone in R2:



Discretizing chaotic systems
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Cyclo-octane configurations

Topology of cyclo-octane energy landscape (Martin, Thompson,
Coutsias, Watson; J. Chem. Phys. 132, 234115 (2010)) study
cyclo-octane (CgH1) as a linkage.
Martin-Thompson-Coutsias-Watson established the topology of
this to be a sphere and a Klein bottle, fused along two circles. They
also computed the Betti numbersto be 5y = 1, 51 = 1,and 5, = 2.

Requiring rest-state distances between atoms, and rest-state planar
angles for carbon-carbon bonds, the resulting linkage has only
rotational joints at each carbon atom.



Worked example: Cyclo-octane

configurations

* Sphere
* Klein bottle

* Intersect in disjoint, unlinked
pair of circles.

* Proves that chemical
configuration spaces need
not be manifold -
consequences for energy
minimization.



Persistent homology and material discovery

Kloke and Haranczyk analyzed zeolites, constructed persistent
homology measures of the sizes of pores in their multi-perioidic
porous structures.

Deriving a CO»-adsorbivity measure from these topological
invariants, they were able to recover materials with drastic
increased adsorbivity in simulations.



Example: Spaces of natural images

Lee-Mumford-Pedersen investigated whether a statistically
significant difference exists between natural and random images.

Natural images form a “subspace” of all images. Dimension of
ambient space e.g. 640 x 480 = 307 200.

This space of natural images should have:

* high dimension: there are many different images.

* high codimension: random images look nothing like natural
ones.



Natural 3x3 patches
Instead of studying entire images, we consider the distribution of
3 x 3 pixel patches.

Most of these will be approximately constant in natural images.
Allowing these drowns out structure.

Lee-Mumford-Pedersen chose 8 500 000 patches with high contrast
from a collection of black-and-white images used in cognition
research. Each 3 x 3-patch is considered a vector in R”.

Normalised brightness: R? — R®. Normalised contrast: R® — S”.

Subsequent topological analysis by Carlsson-de
Silva-Ishkanov-Zomorodian.



Pixel patches in Y

The resulting patches are dense in S” - so we consider high-density
regions.

Pick out 25% densest points. We can pick a parametrised method to
measure density:

Definition

k-codensity dx(x) of a point x is the distance to its kth nearest
neighbour.

k-density dy(x) is 1/dk(x).

High k yields a smoothly changing density measure capturing
global properties. Low k yields a wilder density measure capturing
local properties. k acts as a kind of focus control.
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Three circles



Identifying the subspace of natural pixel

patches

Raising the cut-off bar yields, with coefficients in [,
Bo=1 pr =2 fo =1

Assuming the shape is a surface, this corresponds to one of




Identifying the subspace of natural pixel
patches

Raising the cut-off bar yields, with coefficients in [ 3
fo=1 pi=1

Thus, the relevant shape is:
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Applications of this analysis
Image CompfeSSiOH
A 3 x 3-cluster may be described using 4 values:

* Position of its projection onto the Klein bottle
* Original brightness
* Original contrast

Texture analysis

Textures yield distributions of occuring patches on the Klein bottle.
Rotating the texture corresponds to translating the distribution. [J
Perea]



A topological analysis method

In a recent PhD thesis at Stanford [Singh, '08], a topological method
for data analysis was introduced.

Fundamental topological result: Nerve lemma

Suppose a space X is subdivided X = [ J, X; into contractible (read
simple) components.

Then X is equivalent to the nerve of the covering.



'The nerve of a covering




Topological application

N




Topological application




Topological application

DA



Topological application

DA



Topological application

DA



Translate topology to statistics

Continuous function Measurement function on datapoints
Covering of target space Covering of datapoints

Preimages Preimages
Connected components Clusters

Nerve complex Mapper diagram



Mapper algorithm
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Mapper algorithm

Implementation

This method is provided in a software package currently marketed
by Ayasdi.

Startup company founded by Gurjeet Singh (original thesis on
Mapper) and Gunnar Carlsson (thesis advisor).

%' Ayasdi

Mapping worlds of data



Cancer data

Carlsson - Nicolau and the team at Ayasdi studied physiological
data from around 170 breast cancer patients.

Mapper plot structured as a core with flares extending.
One flare consisted exclusively of survivors (0% mortality). Cluster

analyses and PCA techniques dispersed this group among high
mortality patients.



Political data

Carlsson - Lum - Sandberg - V-J and the team at Ayasdi have studied
vote data from the US congress.




Political data

Carlsson - Lum — Sandberg - V-J and the team at Ayasdi have studied
vote data from the US congress.
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Color term usage

Berlin & Kay (1969) proposed a hierarchy for color term introduction.

If your language has...
2 colors
3 colors
4 colors
5 colors
6 colors
7 colors
8 colors

Then it has...
dark / light
&red

& one of green/yellow

& both green/yellow

& blue

& brown

& purple, pink, orange, or grey

Methods have been criticized; as a result, Kay, Berlin, Maffi,
Merrifield & Cook created the World Color Survey (2009).



World Color Survey
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Approx. 2 500 native speakers from 110 unwritten languages were
asked to name each of the 330 colors in the chart above shown in
constant, random order. Responses are coded by speaker,
language, and lexical term used.

Following an approach by Jager (2012), we produce a
330-dimensional response frequency vector for each term in the
data set.
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'Thank you for listening

How to find out more

G. Carlsson, Topology and Data, survey article in the Bulletin of the
AMS.

R. Ghrist, Barcodes: the persistent topology of data, survey article in
the Bulletin of the AMS.

ATMCS, biennial conference on applied topology. Next up:
Vancouver, June 2014.

Institute for Mathematics and its Applications, thematic year on
applied topology 2013-2014.
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