Topological Data Analysis A software survey

Mikael Vejdemo-Johansson Al Laboratory, Jozef Stefan Institute, Slovenia

Cubical homology Pixels and voxels

- Cellular homology theory
 Building blocks are *n*-cubes
- Admits very efficient matrix processing methods
- Homotopy reduction techniques reduce to matrix traversals
- Well adapted for 2d and 3d images or pixel/voxel clouds

ChomP

- Cubical homology with or without persistence
- GUI, command line interface, and C++ library
- Encodes a wide range of both space and mapping analyses
- Includes a wide range of homotopy-based optimizations
 - http://chomp.rutgers.edu/Software.html

HAP

- Module for the GAP computer algebra system
- Primarily focused on research programming into group cohomology
- Includes support for cubical persistent homology

http://www.gap-system.org/Packages/hap.html

Plex / jPlex / javaPlex

- Family of software packages developed at Stanford, adapted for use from Matlab
- Implements a range of algorithms both for constructing complexes and computing their persistent (co)homology
- Current recommended incarnation: javaPlex http://javaplex.googlecode.com

Dionysus

- Library for computational homology
- Contains example applications implementing persistent homology and cohomology, as well as time-varying persistence (vineyards) & lowdimensional optimizations
- Relies on Boost, and optionally on CGAL for low-dimensional optimizations
- Includes a Python interface through Boost::Python
 - http://www.mrzv.org/software/dionysus

pHat

- Recent released software package and C++ library
- Implements several optimizations to the persistence algorithm
- Does not (currently) construct the complex for you
- (currently) restricted to \mathbb{Z}_2 coefficients
- Some support for SMP parallelization using OpenMP

http://phat.googlecode.com

Perseus

- Cubical and simplicial complex representation and several different construction methods
- Uses discrete morse theory to speed up computation

http://www.math.rutgers.edu/~vidit/perseus

ToMaTo

- C++ library for topological analysis
- Relies on libANN for approximate nearest neighbors

http://geometrica.saclay.inria.fr/data/ToMATo/

GAP Persistence

 Persistent homology and complex construction in the GAP computer algebra system

```
http://www-circa.mcs.st-and.ac.uk/~mik/
persistence/
```

Madder

Madder

Mapper

Mapper

Mapper

Ayasdi / Iris

- Proprietary software package for Mapper-based topological data analysis
- Very intuitive graph display interaction UI
- Statistical tests and factor identification built-in

http://www.ayasdi.com

Python Mapper

- Open source solution
- Developed by Müllner & Babu at Stanford University
- Focused on being a research tool
- Exports graph structure in several formats:
 GraphViz dot
 d3.js JSON graph representation

http://math.stanford.com/~muellner/mapper

Thank you for listening; now go forth and experiment