Topological Data Analysis
A software survey

Mikael Vejdemo-Johansson
AI Laboratory, Jozef Stefan Institute, Slovenia
Cubical homology

Pixels and voxels

- Cellular homology theory
 Building blocks are n-cubes

- Admits very efficient matrix processing methods

- Homotopy reduction techniques reduce to matrix traversals

- Well adapted for 2d and 3d images or pixel/voxel clouds
ChomP

- Cubical homology — with or without persistence
- GUI, command line interface, and C++ library
- Encodes a wide range of both space and mapping analyses
- Includes a wide range of homotopy-based optimizations

http://chomp.rutgers.edu/Software.html
HAP

• Module for the GAP computer algebra system

• Primarily focused on research programming into group cohomology

• Includes support for cubical persistent homology

http://www.gap-system.org/Packages/hap.html
Persistent (co)homology
Point cloud topology
Persistent (co)homology
Point cloud topology
Persistent (co)homology

Point cloud topology
Persistent (co)homology
Point cloud topology
Persistent (co)homology
Point cloud topology
Family of software packages developed at Stanford, adapted for use from Matlab

Implements a range of algorithms — both for constructing complexes and computing their persistent (co)homology

Current recommended incarnation: javaPlex
http://javaplex.googlecode.com
Dionysus

- Library for computational homology
- Contains example applications implementing persistent homology and cohomology, as well as time-varying persistence (vineyards) & low-dimensional optimizations
- Relies on Boost, and optionally on CGAL for low-dimensional optimizations
- Includes a Python interface through Boost::Python

http://www.mrzv.org/software/software/dionysus
pHat

• Recent released software package and C++ library
• Implements several optimizations to the persistence algorithm
• Does not (currently) construct the complex for you
• (currently) restricted to \mathbb{Z}_2 coefficients
• Some support for SMP parallelization using OpenMP

http://phat.googlecode.com
Perseus

- Cubical and simplicial complex representation and several different construction methods
- Uses discrete morse theory to speed up computation

http://www.math.rutgers.edu/~vidit/perseus
ToMaTo

- C++ library for topological analysis
- Relies on libANN for approximate nearest neighbors

http://geometrica.saclay.inria.fr/data/ToMATo/
GAP Persistence

- Persistent homology and complex construction in the GAP computer algebra system

http://www-circa.mcs.st-and.ac.uk/~mik/persistence/
Mapper
Ayasdi / Iris

- Proprietary software package for Mapper-based topological data analysis
- Very intuitive graph display interaction UI
- Statistical tests and factor identification built-in

http://www.ayasdi.com
Python Mapper

- Open source solution
- Developed by Müllner & Babu at Stanford University
- Focused on being a research tool
- Exports graph structure in several formats:
 - GraphViz .dot
 - d3.js JSON graph representation

http://math.stanford.com/~muellner/mapper
Thank you for listening; now go forth and experiment