

Fink \& Mao (2000): There are 85 tie knots

- Announcement in Nature Classification in Physica A Popularization in The 85 ways to tie a tie
- Equality for neck tie knots \neq ambient isometry type of knot: Embedding matters as well as topology
- Fink \& Mao created a formal language to describe tie knot sequences

A formal language for tie knots Fink \& Mao

- Symbols denoting region and direction; and a special symbol U for tucking the tie under itself.
- Each region symbol adorned with \bigcirc or \otimes to denote direction.
- Example:

4-in-hand is $L_{\odot} R_{\odot} L_{\odot} R_{\odot} C_{\odot} U$
Trinity is $\mathrm{L}_{\odot} \mathrm{C}_{\odot} \mathrm{L}_{\odot} \mathrm{R}_{\odot} \mathrm{C}_{\odot} \mathrm{R}_{\odot} \mathrm{L}_{\odot} \mathrm{C}_{\odot} U \mathrm{R}_{\odot} \mathrm{L}_{\odot} \mathrm{U}$

Axioms for Fink \& Mao's language

- No two subsequent symbols share the same $\{L, R, C\}$
- No two subsequent symbols share the same $\{\otimes, \odot\}$
- All tie knots end with either $L_{\odot} R_{\odot} C_{\circ} U$ or $R_{\odot} L_{\odot} C_{\odot} U$
- U is only valid after a \odot-move

Matrix Reloaded - a non-tie-knot

Internet fandom

- After the Matrix Reloaded was released, fans of the movie tried to recreate the tie knots used by The Merovingian
- Alexander Knorr has described the history at xirdalium.net.
- Several attempts at a recreation were released.
- Internet interest in these tie knots exploded as new video tutorials by Alex Krasny were featured on large link sites, late 201 I .

These knots are not among the 85

By design: none of these knots have flat frontal façades.

Thin blade knots: modifying Fink-Mao's language

- Comparing the novel knot families with Fink \& Mao's formal language, we have:
* weakened their assumptions, including these new knots
* simplified their language
* extended their enumeration
* classified their language in the Chomsky hierarchy of computational complexity for formal languages

Thin blade knots: modifying Fink-Mao's language

- No two subsequent symbols share the same $\{\otimes, \odot\}$ U is only valid after a \odot-move

So \otimes, \odot are irrelevant; we can deduce these from the length of a knot description.

- No two subsequent symbols share the same $\{L, R, C\}$

So only the direction ($L \rightarrow R \rightarrow C$ or $L \rightarrow C \rightarrow R$) matters

- All tie knots end with either $L_{\Theta} R{ }_{\theta} G_{\Theta} U$ or $R \Theta L_{\Theta} G_{\Theta} U$

Introducing new symbols

- We introduce a new alphabet: \{T,W, U\}

For Turnwise, Widdershins and Unde

- Arbitrary strings of T/W form valid winding sequences
- Tucking the tie under depends on the existence of something to tuck under

Winding translations and $\mathbb{Z} / 3 \mathbb{Z}$

- The translation between W/T-sequences and L/R/C-sequences uses mod 3 arithmetic
- Knot end direction given by $[\# \mathrm{~W}-\# \mathrm{~T}]_{3}$
- Validity of tucking underneath a previous strand depends on $[\# \mathrm{~W}-\# \mathrm{~T}]_{3}$ for subsequences
- Examples - convention first move always to L: 4-in-hand is WTWWU Trinity is TWWWTTTUTTU

Rules and conventions for U

- We allow ourselves to write U^{k} to tuck under the kth preceding bow.
- U^{k} is a valid move if
* there are 2 k preceding W/T-symbols
* either the first of these 2 k symbols is W and $[\# \mathrm{~W}-\# \mathrm{~T}]_{3}=2$ or the first of these is T and $[\# \mathrm{~W}-\# \mathrm{~T}]_{3}=1$ each summed over these $2 k$ symbols
- For $\mathrm{k}=\mathrm{I}, \mathrm{WWU}$ and TTU are the only valid options

Singly tucked knots are regular

General knots:

either context-free or context-dependent

- Recursive annotated grammar describes the tuck rules: thus at most context-dependent and at least context-free
- Our grammar is not immediately amenable to classic pumping lemma arguments

Enumerating

- Winding sequences that start at L and end at R or C are counted by

$$
\sum_{\substack{\# w-\# t=2(\bmod 3) \\ \# w+\# t=k}}\binom{k}{\# t}-2\binom{k-2}{\# t-1}
$$

- Winding sequences that start and end at L are counted by

$$
\sum_{\substack{\# w-\# t=0(\bmod 3) \\ \# w+\# t=k}}\binom{k}{\# t}-2\binom{k-2}{\# t-1}
$$

So... how many are there?

Windings

k	2	3	4	5	6	7	8	9	10	11	total
Left	0	2	2	6	10	22	42	86	170	324	682
Center	1	1	3	5	11	21	43	85	171	341	682
Right	1	1	3	5	11	21	43	85	171	341	682

These 2046 winding patterns generate 177147 allowable patterns singly tucked knots

Thank you for your attention

