
Necktie knots
Formal languages

Information security

Mikael Vejdemo-Johansson
	

 	

 	

 KTH Royal Institute of Technology, Stockholm
	

 	

 	

 Jozef Stefan Institute, Ljubljana
	

 	

 	

 Institute for Mathematics and its Applications, Minneapolis

What I hope you will learn today

• I want to demonstrate to you that algebra — especially as a means to
abstracting from complex patterns to easy-to-understand systems of
smaller combinable pieces — is interesting and has relevant
repercussions.

• I want to show you a part of algebra you are not likely to see in a
standard undergraduate curriculum.

• I will do this by showing you some of my research on tie knots, and
how this ties in with information security and with linguistics.

AR 670-1
Wear and Appearance of Army Uniforms and Insignia

27-19. Neckties, male

c. Necktie, four-in-hand, black, service.

(3) How worn.

(a) Personnel may wear the tie in a Windsor, half-Windsor, or
four-in-hand knot. Use of a conservative tie tack or tie clasp is
authorized. The necktie is tied so it is no shorter than 2 inches
above the top of the belt buckle, and so it does not extend
past the bottom of the belt buckle.

How do you tie your tie?

• In particular: how do you describe how you tie your tie?

Fink & Mao (2000)

• Cambridge Physicists Thomas Fink and
Yong Mao tried to count all possible
necktie knots.

• To do this, they invented a mathematical
shorthand for describing knots:

• Sequence of zones that the tie end goes
through

L R

C

Regulation tie knots

4-in-hand LRLCU

half-Windsor LRCLRCU

Windsor LCRLCRLCU

L R

C

L - Left
R - Right
C - Center
U - tuck Under

So… how many are there?
• Fink and Mao found 85 tie knots

• Used their symbols + rules

• Forbidden sequences:
LL, CC, RR
inwards after inwards, outwards after outwards

• Prescribed ending:
LRCU or RLCU

• Prescribed length:
9 moves

More ties than we thought

• In a recent preprint of mine, we
modify these symbols and rules

• Instead of L/R/C, use Widdershins
(CCW) / Turnwise (CW)

• Inwards/outwards and no repeat
regions fixed in symbol choices

• Only remaining rules guide when
Under moves are possible

L R

C
T

W

New notation: new knots
Removing assumptions
from Fink&Mao opens
up for new knots.

Writing down rules and
axioms, we can use the
algebra of formal
languages to count the
new knots.

We found 174 147
possible new tie knots.

Eldredge
LCRLRCRLUCRCLU
TTTWWTTUTTWWU

Trinity
LCLRCRLCURLU
TWWWTTTUTTU

Try some non-regulation knots
Thin blade active Thick blade active (start inverted)

Edeity LCLRCRLCU

Trinity LCLRCRLCURLU

Eldredge LCRLRCRLUCRCLU

Allwin LCLRCLRLRCUULRU

Atlantic LCRLCU

Kelvin LRLRCU

Pratt LCLRCU

Hanover LRCLRCLRCU

Balthus LCRCLCRLCU

Oriental LRCU

UU in the Allwin means go under the 2nd to last bow

Patterns and abstraction
• Mathematics is all about finding patterns and extracting rules

• We see a complex system of things:
Planetary motion… necktie knot variations… bee hive dances…
Terracotta soldiers… traffic flow…

• Break the system down into simple pieces.
Study rules for how to combine these pieces.

• Algebra studies different rulesets for combining simple pieces:
Vector spaces and matrices for… signal processing… logistics
planning… encryption/decryption… geometry… mechanics…

Formal languages:
the abstraction of text patterns
• A language is

• Some alphabet of allowed symbols

• Some collection of allowed words

• Some collection of grammatical rules

• Formal languages study the levels of complexity that emerge from rule
sets.

Hierarchy of languages
• Noam Chomsky proposed a hierarchy of complexity levels of formal

languages:

Type 0 Unrestricted. Anything you could program. Recognized by Turing
Machines.

Type 1 Context-sensitive. Rules can depend on left- and right-contexts.
Recognized by bounded Turing Machines

Type 2 Context-free. Rules can not depend on contexts. Rules can chain
together. Rules can nest in other rules. Recognized by stack machines.

Type 3 Regular. Rules can not depend on contexts. Rules can chain with
strong restrictions. Recognized by state machines.

Regular languages

• Generate extremely fast computer code to generate or recognize.

• Used a lot in search engines: regular expressions

• Very restricted; no memory.

• No backtracking in checking validity.

• Can recognize, e.g. {b, ab, aab, aaab, ...}
Can not recognize, e.g. {ab, aabb, aaabbb, aaaabbbb,} or palindromes.

Context-free languages

• Basis for the syntax of many programming languages.

• No backtracking, but has limited memory.

• Can recognize {ab, aabb, aaabbb, aaaabbbb, ...} and palindromes.
Can not recognize {aba, aabbaa, aaabbbaaa, ...}

Context-sensitive languages

• All natural human languages seem to fall in this category.

• Many fundamental protocols and computer systems fall here.
ASN.1, crypto certificates, communication protocols...

Recursively Enumerable languages

• May require the full attention of an infinitely large computer.

• Can express all computable things.

• Might not be computable with finite resources.

So where do the tie knots fit in?

• What do you think?

• Regular?

• Context-free?

• Context-sensitive?

• Recursively enumerable?

So where do the tie knots fit in?

• If we limit the length of the tie?
Regular

• If we limit the number of steps back (UU et.c.) we can take?
Regular

• The unrestricted language of infinitely long infinitely thin neckties?
Either context-free and context-sensitive

Undecidable problems
• Some questions can be proven not to have answers always computable

in finite time:

• Does this Turing Machine ever stop? (the Halting problem)

• Does this context-sensitive language have any valid strings?

• Are these two context-free languages the same?

• If there are variations in the language designed and the language
implemented we might not be able to accurately predict all possible
results. There are weird machines where any bug or malformed input
can disrupt the system — including exploits or security holes.

Security ramifications
• Computer communications rely on tightly specified protocols

TCP/IP, Email (SMTP), Web (HTTP), encryption (SSL/TLS)…

• If the implementation of a protocol uses too weak a parser, it will actually
implement a different protocol.
If the equivalence of languages is undecidable, two different
implementations might actually implement different protocols.

• Kaminsky, Patterson and Sassaman (2010): showed that one can play out
differences in protocol implementations to produce arbitrarily bad
encryption certificates. The internet trust networks cannot be trusted…
We could, e.g., get the means to impersonate www.amazon.com or
www.usma.edu or www.army.mil without the browser warning for the
deception.

http://www.amazon.com
http://www.amazon.com
http://www.usma.edu
http://www.usma.edu
http://www.army.mil
http://www.army.mil

Do you want to know more?

• www.langsec.org for formal languages based security research

• tieknots.johanssons.org for some pointers on tie knot languages and a
random tie knot generator

The research here has been joint work with:
Anders Sandberg, Oxford University
Meredith L Patterson and Dan Hirsch, Upstanding Hackers LLC

http://www.langsec.org
http://www.langsec.org
http://tieknots.johanssons.org
http://tieknots.johanssons.org

