

Towards a topological machine learning

Mikael Vejdemo-Johansson AUS-ICMS

Overview of existing work

- Stability of persistence
- Persistence of random point clouds
- Distance to measure
- Persistence as ML feature vectors
- Barcode means

Point cloud cohomology: persistence

- Just computing cohomology: not useful
 Discrete points have no interesting structure.
- Instead:
 - 1. Cover each point with a ball
 - 2. Compute cohomology of the union of balls

The Čech complex of radius r has a simplex for data points $x_0,...,x_n$ whenever all the balls of radius r centered around the data points share an intersection. d_i removes x_i . This generalizes the single linkage graph.

The Vietoris-Rips complex is completely defined by the single linkage graph: includes a simplex whenever there is a clique in the single linkage graph.

Face maps just like in the Čech case.

Functoriality: algebraic continuity

 If we increase the radius, no cells vanish the complex can only ever increase.

For any r < r' there are inclusion maps $\check{C}_r(X) \to \check{C}_{r'}(X)$

Computing cohomology is a functor — continuous in an algebraic sense:

if there is a map $X \rightarrow Y$, then there is an induced map $H^1Y \rightarrow H^1X$

I loop

3 loops

I loop

Key point: are loops the same?

- The induced map come to our rescue:
- From a sequence of spaces

$$X_1 \hookrightarrow X_2 \hookrightarrow X_3 \hookrightarrow ... \hookrightarrow X_n$$

cohomology produces a sequence of vector spaces

$$H^1X_n \rightarrow ... \rightarrow H^1X_3 \rightarrow H^1X_2 \rightarrow H^1X_1$$

Algebra glues features

- Theorem (Gabriel, 1972): If M is a collection of vector spaces with linear maps along a path, M decomposes into interval modules.
- Decomposition produces birth/death pairs just like our barcodes.

Interval decompositions produce salient features

Decomposing a diagram such as

$$H^1X_n \rightarrow ... \rightarrow H^1X_3 \rightarrow H^1X_2 \rightarrow H^1X_1$$

produces a direct sum diagram where each summand has the shape

$$0 \rightarrow \dots \rightarrow 0 \rightarrow \mathbb{k} \rightarrow \dots \rightarrow \mathbb{k} \rightarrow 0 \rightarrow 0 \rightarrow 0$$

where all maps $0 \to 0$ and $\mathbb{k} \to \mathbb{k}$ are isomorphisms.

 Each such summand is a choice of a (higher dimensional) essential circle coordinate across parameter values that persists across different values.

Barcodes and persistence diagrams

- Visualization tools for topological information
- Displays each interval in the decomposition

Barcodes and persistence diagrams

- Visualization tools for topological information
- Displays each interval in the decomposition

upper bound on maximal distance between points upper bound on Wasserstein distance isometric to interleaving distance

Stability of persistence

- Persistence is: the evolution of the topology of sublevel sets of a function on a (sample from a) manifold.
- Stability of persistence: the mapping from the function-and-manifold to the persistence diagram is
 - Continuous
 - 1-Lipschitz
- Therefore: what persistence computes is related to the original topology. Small features go away with small perturbations.

Persistence of random points

- Zomorodian: Random flag complex. β_n and β_{n+2} (mostly) don't overlap
- Adler et.al.:
 Excursion sets of random fields: Snap, crackle, pop.
- Kahle: Phase transitions for persistence of random points in \mathbb{R}^d for a wide family of probability distributions.

Distance to measure

- Consistent, stable and easy to compute estimator of topological features of an underlying probability distribution.
- Connect points to their nearest neighbors. Work with the resulting filtered simplicial complex.
- Chazal, Guibas, Oudot, Skraba (2013)

Machine learning features

- Adcock, Carlsson, Carlsson:
 Classify functions on barcodes to make it easier to pick features
- Berwald, Gidea, V-J: Classify different modes of dynamics using ML on persistence barcodes
- Topology as dimensionality reduction.
- Bubenik: Persistence landscapes

Mean barcode Confidence intervals

- Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh: Confidence sets for persistence diagrams
- Turner, Mileyko, Mukherjee, Harer:
 Fréchet means for distributions of persistence diagrams
- Munch, Bendich, Turner, Mukherjee, Mattingly, Harer:
 Probabilistic Fréchet means and statistics on vineyards
- Mileyko, Mukherjee, Harer:
 Probability measures on the space of persistence diagrams

New directions

 Machine learning provides tools that can make persistent homology work better.

 I will describe my latest research ideas next: using density estimation to build streaming topological learning.

Streaming persistence

- Inspiring example:
 - Tape accelerometer to a shoe.
 - Measure signal: different closed curves for different steps/gaits.
 - Build a topological model of this recurrence.
- Problem:
 - Want to run data capture for a long time.
 - Persistence behaves badly [O(n⁶)] with size.
 - 100 runs with 100 points faster than one run with 10 000 points.
- We need to control input size to persistence.

Streaming persistence

Unknown

Cohomology

- Produces a topological system for generating circle-valued coordinate functions.
- This improves on state-of-the-art for analyzing recurrence.
- Applicable in motion capture and gait analysis.

Cohomology

- Produces a topological system for generating circle-valued coordinate functions.
- This improves on state-of-the-art for analyzing recurrence.
- Applicable in motion capture and gait analysis.

Indicator / feature functions on recurrence

 The functions generated by cohomology work as indicators of different recurrent features.

Indicator / feature functions on recurrence

 The functions generated by cohomology work as indicators of different recurrent features.

Current state

1-d seems doable: learned curves qualitatively similar

Current state

3d with Gaussian Mixture Models? Not quite...

Next up: try GPLVM

Gaussian Process Latent Variable Models

If anyone has any good ideas — **tell me**!

KTH Computer Science

Builds automatically a discrete model.

Stable under permutation of data.
 Under permutation of filter functions.

 Persistent topology along varying feature functions: active research field.

Strong potential for novel model creation for ML application.
 Going beyond Data Analysis.

Thank you for listening

شكرا لإصنائكم