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Overview of existing work

•Stability of persistence 

• Persistence of random point clouds 

• Distance to measure 

• Persistence as ML feature vectors 

• Barcode means



Point cloud cohomology: 
persistence

• Just computing cohomology: not useful  
Discrete points have no interesting structure. 

• Instead: 

1. Cover each point with a ball 

2. Compute cohomology of the union of balls
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Encoding geometry

The Čech complex of radius r has a simplex for data points 
x0,...,xn whenever all the balls of radius r centered around 

the data points share an intersection. di removes xi.
This generalizes the single linkage graph.



Encoding geometry

The Vietoris-Rips complex is completely defined by the 
single linkage graph: includes a simplex whenever there is 

a clique in the single linkage graph.
Face maps just like in the Čech case.



Functoriality:  
algebraic continuity

• If we increase the radius, no cells vanish 
the complex can only ever increase. 

For any r < r’ there are inclusion maps 
Čr(X) → Čr’(X) 

• Computing cohomology is a functor — continuous in an 
algebraic sense:  
if there is a map X → Y, then there is an induced map 
H1Y → H1X
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Key point:  
are loops the same?

•The induced map come to our rescue: 

• From a sequence of spaces 

X1 ↪ X2 ↪ X3 ↪ … ↪ Xn 

cohomology produces a sequence of vector spaces 

H1Xn → … → H1X3 → H1X2 → H1X1
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Algebra glues features

•Theorem (Gabriel, 1972): If M is a collection of vector 
spaces with linear maps along a path, M decomposes 
into interval modules. 

• Decomposition produces birth/death pairs just like our 
barcodes.



Interval decompositions 
produce salient features

•Decomposing a diagram such as 
H1Xn → … → H1X3 → H1X2 → H1X1 
produces a direct sum diagram where each summand 
has the shape 
0 → … → 0 → 𝕜 → … → 𝕜 → 0 → 0 → 0 
where all maps 0 → 0 and 𝕜 → 𝕜 are isomorphisms. 

• Each such summand is a choice of a (higher 
dimensional) essential circle coordinate across 
parameter values that persists across different values.
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Barcodes and  
persistence diagrams

• Visualization tools for 
topological information 

• Displays each interval in 
the decomposition
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Barcodes are stable

L∞ distance of functions

upper bound on maximal distance 
between points

upper bound on Wasserstein distance
isometric to interleaving distance



Stability of persistence
•Persistence is:  

the evolution of the topology of sublevel sets of a 
function on a (sample from a) manifold. 

• Stability of persistence:  
the mapping from the function-and-manifold to the 
persistence diagram is 

• Continuous 

• 1-Lipschitz 

• Therefore: what persistence computes is related to the 
original topology. Small features go away with small 
perturbations.



Persistence of  
random points

•Zomorodian:  
Random flag complex. βn and βn+2 (mostly) don’t overlap 

• Adler et.al.:  
Excursion sets of random fields: Snap, crackle, pop. 

• Kahle:  
Phase transitions for persistence of random points in ℝd 
for a wide family of probability distributions.



Distance to measure

•Consistent, stable and easy to compute estimator of 
topological features of an underlying probability 
distribution. 

• Connect points to their nearest neighbors. Work with 
the resulting filtered simplicial complex. 

• Chazal, Guibas, Oudot, Skraba (2013)



Machine learning features

•Adcock, Carlsson, Carlsson:  
Classify functions on barcodes to make it easier to pick 
features 

• Berwald, Gidea, V-J: 
Classify different modes of dynamics using ML on 
persistence barcodes 

• Topology as dimensionality reduction. 

• Bubenik: Persistence landscapes



Mean barcode 
Confidence intervals

• Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh: 
Confidence sets for persistence diagrams 

• Turner, Mileyko, Mukherjee, Harer:  
Fréchet means for distributions of persistence diagrams 

• Munch, Bendich, Turner, Mukherjee, Mattingly, Harer: 
Probabilistic Fréchet means and statistics on vineyards 

• Mileyko, Mukherjee, Harer: 
Probability measures on the space of persistence diagrams



New directions

•Machine learning provides tools that can make 
persistent homology work better. 

• I will describe my latest research ideas next: 
using density estimation to build streaming topological 
learning.



Streaming persistence
• Inspiring example: 

• Tape accelerometer to a shoe. 

• Measure signal:  
different closed curves for different steps/gaits. 

• Build a topological model of this recurrence. 

• Problem: 

•Want to run data capture for a long time. 

• Persistence behaves badly [O(n6)] with size. 

• 100 runs with 100 points faster than one run with 
10 000 points. 

•We need to control input size to persistence.
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Cohomology

•Produces a topological system for 
generating circle-valued coordinate 
functions. 

• This improves on state-of-the-art for 
analyzing recurrence. 

• Applicable in motion capture and gait 
analysis.
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Current state

1-d seems doable: learned curves qualitatively similar



Current state

3d with Gaussian Mixture Models? Not quite…

Next up: try GPLVM 
Gaussian Process Latent Variable Models

If anyone has any good ideas — tell me!
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Mapper
•Builds automatically a discrete model. 

• Stable under permutation of data. 
Under permutation of filter functions. 

• Persistent topology along varying feature functions:  
active research field. 

• Strong potential for novel model creation for ML application.  
Going beyond Data Analysis.



Thank you for listening 

شكرا لإصغائكم


