

Mapper can produce a topological model for fibres of failure modes.

Topology in the furnace:

TDA as a diagnostics tool for process control systems.

Mikael Vejdemo-Johansson in transit KTH → CUNY

- Early work in progress
- Collaboration with
 Ayasdi Inc.
 Outukumpu Stainless AB
 KTH ITM (Industrial Engineering and Management)
- * Plan: use TDA to understand, diagnose and improve industrial process control and engineering.

First approach: diagnostics on existing control systems with Mapper.

What is mapper?

The Mapper algorithm

- Gurjeet Singh (2012)
- * Built on a topological basic idea
- * Creates intrinsic simplicial complex model of arbitrary data

* Consider:

- SpacesX, Y
- Continuous mapf: X → Y
- * Cover $Y = \bigcup Y_i$

- * The cover pulls back to a cover $X=\cup f^{-1}Y_i$
- * Refine cover to connected components $X=\cup X_j; X_j \in \pi_0 f^{-1}Y_i$
- * If each X_j is contractible, Nerve lemma \rightarrow nerve complex $\simeq X$.

From topology to data: a dictionary

- Topological space
- * Continuous map $X \rightarrow Y$
- * Cover
- * π_0
- Nerve complex

- * Point cloud
- * Filter function or lens $X \rightarrow \mathbb{R}^d$
- Partition with overlap
- * Clustering wrt metric.
- * Nerve complex

Mapper is parametrized by a choice of lens(es), of metric, of (parameters for) partition and of clustering method.

Implementations

- * mapper.m
- Ayasdi Core
- * PyMapper
- * TDAMapper (R)
- * mirkoklukas/tda-mapper-py
- * MLWave/kepler-mapper

Electric Arc Furnaces

Electric Arc Furnace

- * Works by producing electric arcs from electrodes to scrap metal, producing heat that melts the metal.
- * Standard 3-phase 220V 50Hz electricity.
- * Consumes ~0.4 kWh/kg; theoretical minimum is ~300kWh.

Electric Arc Furnace

- Furnace in Avesta run by Outukumpu Stainless.
- * Stainless: expensive scrap, high price output.
- * Single charge produces 100 tonnes stainless steel.
- * Approximately 5000 charges per year 15-20 per day.

Temperature constraints

- * Optimal temperature ~1600°
- * Too low: not fully smelted
- * Too high: entire batch spoiled

- * Reference measurement possible: single use probe expensive and leaks heat.
- Metallurgical models available.
 Error spans ±400°.
 IQR -120° +18°

Model parameters

* Known factors at any time point in production:

Element composition of the scrap
Energy used
Temperature of added scrap
Injected additives: amount & temperature
Metallurgical model prediction

 Question: Can we classify model failure modes, and dynamically recognize them?
 Can we dynamically compensate?

Process diagnostics

Basic idea: Mapper on fibres

Basic idea: Mapper on fibres

- Process model is a function
 [input data] → [model output]
- * Given input data, we can find both measurement [T], prediction [T+ Δ T] and prediction error [Δ T].

* Idea: study fibres of the map [input data] $\rightarrow \Delta T \times T$

Basic idea: Mapper on fibres

- Process model is a function
 [input data] → [model output]
- * Given input data, we can find both measurement [T], prediction [T+ Δ T] and prediction error [Δ T].

- * Idea: study fibres of the map [input data] $\rightarrow \Delta T \times T$
- * Esp.: large values of $|\Delta T|$.

Master plan

- * Flares and features in Mapper
 - → classification of fibre shape
- * Look for shape of input data over extreme values
- * Find failure modes that can be recognized in production

Test on future data!

The shape of steel

The shape of steel

Mapper shape from
 Ayasdi Core
 Metric: Variance Normalized
 Euclidean
 Lenses:
 PCA1, PCA2, ΔT, T

The shape of steel

Mapper shape from
 Ayasdi Core
 Metric: Variance Normalized
 Euclidean

 Lenses:

* Core-generated auto-groups.

PCA1, PCA2, ΔT , T

Find recognizable extremes

- Drop singleton auto groups
- Drop auto groups with any error less than 100°
- Compute global PCA, eyeball distribution of PCA1 among remaining auto groups

Find recognizable extremes

- Drop singleton auto groups
- Drop auto groups with any error less than 100°
- Compute global PCA, eyeball distribution of PCA1 among remaining auto groups

Find recognizable extremes

- Drop singleton auto groups
- Drop auto groups with any error less than 100°
- Compute global PCA, eyeball distribution of PCA1 among remaining auto groups

Candidate failure modes

- Auto-generated groups 17, 19, 21, 23, 32, 37.
- * Most are very small. Group 23 bigger.
- * Question: Can we detect membership in Group 23?

Candidate failure modes

- Auto-generated groups 17, 19, 21, 23, 32, 37.
- * Most are very small. Group 23 bigger.
- * Question: Can we detect membership in Group 23?

Membership detection, 23

- Logistic regression, class-balanced sampling
- * A **lot** of false positives.
- * Probably improves with better classifiers.
- * Certainly improves with more data.
- * Already somewhat useful results.

Why not just do naive regression?

* Far fewer false positives

Where do we go from here?

- * Collect more data
- Validate these classifiers
- Test other possibly better classifiers

* Analyze the sound of the furnace: frequency spectra correspond to smelting stages use Mapper to find recognizable smelting modes?

