Mapper can produce a topological model for fibres of failure modes.

Topology in the furnace:

Mikael Vejdemo-Johansson

TDA as a diagnostics tool for in transit KTH — CUNY
agn
process control systems.
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« Early work in progress

+ Collaboration with

Ayasdi Inc.
Outukumpu Stainless AB
KTH ITM (Industrial Engineering and Management)

“ Plan: use TDA to understand, diagnose and improve

industrial process control and engineering.

First approach: diagnostics on existing control systems
with Mapper.



What is mapper?



T'he Mapper algorithm

* Gurjeet Singh (2012)
“ Built on a topological basic idea

“ Creates intrinsic simplicial complex model ot arbitrary
data



T'opological background

+ Consider:

* Spaces
XY

* Continuous map
: X—=Y

+ Cover
e—he

* The cover pulls back to a

cover
X=uUflY;

“ Refine cover to connected

components
X:UX]'; X] Syl E

« If each Xj is contractible,

Nerve lemma — nerve
complex = X.



Topological background




T'opological background
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T'opological background

s
: ;.EJME
e

/s




Topological background

wa@




T'opological background
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From topology to data: a dictionary

* Topological space + Point cloud

“ Continuous map + Filter function or lens
X —=Y X — Rd

+ Cover « Partition with overlap

* Tl “ Clustering wrt metric.

* Nerve complex “ Nerve complex

Mapper is parametrized by a choice of lens(es), of metric,
of (parameters for) partition and of clustering method.
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Implementations

% mapper.m

“ Ayasdi Core

+ PyMapper

+ TDAMapper (R)
+ mirkoklukas/tda-mapper-py
+ MLWave /kepler-mapper



Electric Arc Furnaces



Electric Arc Furnace

* Works by producing electric
arcs from electrodes to scrap
metal, producing heat that
melts the metal.

* Standard 3-phase 220V 50Hz
electricity.

* Consumes ~0.4 kWh /kg;
theoretical minimum is
~300kWh.




Electric Arc Furnace

* Furnace in Avesta run by
Outukumpu Stainless.

* Stainless: expensive scrap,
high price output.
* Single charge produces 100

tonnes stainless steel.

* Approximately 5000 charges
per year — 15-20 per day.

| e——
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Temperature constraints

* Optimal temperature ~1600°
* Too low: not fully smelted

* Too high: entire batch spoiled

* Reference measurement
possible: single use probe
expensive and leaks heat.

* Metallurgical models available.

Error spans +400°.
[OR-120> — +16°
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Model parameters

+ Known factors at any time point in production:

Element composition of the scrap

Energy used

Temperature of added scrap

Injected additives: amount & temperature
Metallurgical model prediction

+ Question: Can we classify model tailure modes, and

dynamically recognize them?
Can we dynamically compensate?



Process diagnostics



Basic idea: Mapper on fibres
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Basic idea: Mapper on fibres

* Process model is a function
l[input data] — [model output] #5000

* (Given input data, we can find
both measurement [T],
prediction [T+AT] and
prediction error [AT].

“ Idea: study fibres of the map
[input data] = AT x T




Basic idea: Mapper on fibres

* Process model is a function

l[input data] — [model output] o000

* (Given input data, we can find
both measurement [T],
prediction [T+AT] and
prediction error [AT].

“ Idea: study fibres of the map
[input data] = AT x T

+ Esp.: large values of |AT|. a0 A0 e0o




Master plan

“ Flares and features in Mapper

— classification of fibre shape
* Look for shape of input data over extreme values

* Find failure modes that can be recognized in production

+ Test on future data!



T'he shape of steel




T'he shape of steel

* Mapper shape from
Ayasdi Core
Metric: Variance Normalized
Euclidean

Lenses:
PCA1, PCA2, AT, T




T'he shape of steel

Mapper shape from

Ayasdi Core

Metric: Variance Normalized
Euclidean

Lenses:
PCA1, PCA2, AT, T

Core-generated auto-groups.
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Find recognizable extremes

* Drop singleton auto groups

* Drop auto groups with any error less than 100°

among remaining auto groups
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Find recognizable extremes

* Drop singleton auto groups
* Drop auto groups with any error less than 100°

* Compute global PCA, eyeball distribution of PCA1

among remaining auto groups
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Find recognizable extremes

* Drop singleton auto groups

* Drop auto groups with any error less than 100°

* Compute global PCA, eyeball distribution of PCA1
among remaining auto groups
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* Question: Can we detect

Candidate failure modes

* Auto-generated groups 17, 19,
205 50 o
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“ Most are very small. Group 23
bigger.
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membership in Group 23?
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* Question: Can we detect

Candidate failure modes
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* Logistic regression,

+ Alot of false positives. @

Membership detection, 23

1o Logistic regression for group 23

B probably member
class-balanced we true member

sampling -
+ Already somewhat 1) |ﬂ|| 1“|I|I| III I

useful results. ~500 —400 300 —200 ~100 100

» Probably improves
with better classifiers.
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Why not just do naive regression?
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Where do we go from here?

+ (Collect more data

+ Validate these classifiers

« Test other possibly better classifiers

* Analyze the sound of the furnace:
frequency spectra correspond to smelting stages
use Mapper to find recognizable smelting modes?
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