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Before we start:
ATMCS 2018

e Biennial TDA conference

e June 25-29, 2018
IST-Austria, Klosterneuburg, outside Vienna

* Timed to match with
Symposium on Computational Geometry /
Computational Geometry Week in Budapest
(also with a TDA session)

 http://atmcs8.appliedtopology.org
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Outline

Mapper review

Prediction as a function

Borrow from the future: prediction error fibres

Fibres of Failure

Example: CNN on corrupted MNIST
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Topological background

» Consider: * The cover pulls back to
a cover
e Spaces X=uf1Y;
X, Y
* Refine cover to
» Continuous map connected components
f: X =Y X=uX;; X; € miof1Y;
* Cover » |f each X;is contractible,
Y = uY; Nerve lemma — nerve
complex = X.
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Topological background
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From topology to data:

a dictionary
* Jopological space * Point cloud
e Continuous map e Filter function or lens
XY X — Rd
* Cover e Partition with overlap
* Tlo e Clustering wrt metric.
* Nerve complex * Nerve complex

Choices: lens(es), metric,
(parameters for) partition and of clustering method.
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Predictive Processes

* Regression (continuous predictions)
Classification (discrete predictions)

* Functions from data to probability distribution or
summary statistic

* Po(input) = prediction
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Predictive Processes

e All observed inputs: point cloud, sampled from all
possible inputs

* Observation of prediction and ground truth yields:
(input, prediction, outcome) tuples

* [raining data set
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Clairvoyant Mapper

* [rain a Mapper model using
* Only input as data

* Prediction error (and prediction/ground truth)
as filter

e Separates inputs on the errors they eventually
make

* New inputs can be matched against Mapper model
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Fibres of Failure

(input, prediction, outcome)

ﬂ

Mapper
Input as data

v prediction-outcome as filter

Mapper model

|dentify high error flares (failure modes)

v

Quantitative

Adjusted predictive process:

Qo(x) = Po(x) + flare adjustments

Qualitative

\4

Flare investigation:

what characterizes a failure mode?
Feedback to predictive modeling
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Experiment:
MNIST Digit Recognition

9216

28x28x1 128 128

Fx

I I—»l—» C(k)

26x26x32 24x24x64 12x12x64 12x12x64
Soft-
Dense Dense

i .I Dropout

Conv2D Conv2D Max Dropout 50%
pooling 25%  Flatten

* Trained a simple CNN on recognizing hand-written
digits

* CNN accuracy 99% on test (new) data
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Let’s make it more difficult

Group 57 Bottom 3 - TV 4 - Surprise 0 90 Group 48 Bottom 3 - TV 3 - Surprise 0 50 Group 46 Bottom 4 - TV 6 - Surprise 0 75 Group 23 -Top 0-TV 9 - Surprise 0.66
10 20 10 20 10 20 0 5 10 15 20 25

Add 25% salt/pepper n0|se f||p pixels to pure blaok or white

CNN accuracy 40.9% on corrupted data
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Quantitative

* |dentified 39 high error groups
Consistent ground truth within each group

Cover ~30% of all corrupted images

* Trained one-vs-rest linear classifier ensemble to recognize
failure modes

* Replace prediction with known group ground truth
* Overall accuracy: 64.5% (up from 40.9%)

 CNN accuracy on recognized failure mode members:
16.1%

e (Group ground truth accuracy: 70%-90%
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Qualitative

Group_15 - Prediction +- 2 std. err.
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Thank you for listening

* Fibres of Failure: Classity failure modes
 Mapper with failure measure as a ftilter function
* |dentity high failure flares
* |nspect failure modes qualitatively

 (Generate ensemble classifier to adjust
original predictions
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