

Fibres of Failure

Mapper for Process Diagnostics

Mikael Vejdemo-Johansson Leo Carlsson Gunnar Carlsson

Before we start: ATMCS 2018

- Biennial TDA conference
- June 25-29, 2018
 IST-Austria, Klosterneuburg, outside Vienna
- Timed to match with Symposium on Computational Geometry / Computational Geometry Week in Budapest (also with a TDA session)
- http://atmcs8.appliedtopology.org

Outline

- Mapper review
- Prediction as a function
- Borrow from the future: prediction error fibres
- Fibres of Failure
- Example: CNN on corrupted MNIST

Topological background

- Consider:
 - SpacesX, Y
 - Continuous map
 f: X → Y
 - Cover $Y = \cup Y_i$

- The cover pulls back to a cover
 X=uf⁻¹Y_i
- Refine cover to connected components $X=uX_j; X_j \in \pi_0 f^{-1}Y_i$
- If each X_j is contractible, Nerve lemma → nerve complex ~ X.

Topological background

From topology to data: a dictionary

Topological space

Point cloud

Continuous map
 X → Y

Filter function or lens
 X → ℝ^d

Cover

Partition with overlap

π₀

• Clustering wrt metric.

Nerve complex

Nerve complex

Choices: lens(es), metric, (parameters for) partition and of clustering method.

Predictive Processes

- Regression (continuous predictions)
 Classification (discrete predictions)
- Functions from data to probability distribution or summary statistic
- $P_{\theta}(input) \rightarrow prediction$

Predictive Processes

- All observed inputs: point cloud, sampled from all possible inputs
- Observation of prediction and ground truth yields: (input, prediction, outcome) tuples
- Training data set

Clairvoyant Mapper

- Train a Mapper model using
 - Only input as data
 - Prediction error (and prediction/ground truth) as filter
- Separates inputs on the errors they eventually make
- New inputs can be matched against Mapper model

Fibres of Failure

(input, prediction, outcome)

Mapper input as data prediction-outcome as filter

Mapper model Identify high error flares (failure modes)

Quantitative

Qualitative

Adjusted predictive process: $Q_{\theta}(x) = P_{\theta}(x) + \text{flare adjustments}$

Flare investigation:
what characterizes a failure mode?
Feedback to predictive modeling

Experiment: MNIST Digit Recognition

- Trained a simple CNN on recognizing hand-written digits
- CNN accuracy 99% on test (new) data

Let's make it more difficult

- Add 25% salt/pepper noise: flip pixels to pure black or white
- CNN accuracy 40.9% on corrupted data

Quantitative

- Identified 39 high error groups
 Consistent ground truth within each group
 Cover ~30% of all corrupted images
- Trained one-vs-rest linear classifier ensemble to recognize failure modes
- Replace prediction with known group ground truth
 - Overall accuracy: 64.5% (up from 40.9%)
 - CNN accuracy on recognized failure mode members:
 16.1%
 - Group ground truth accuracy: 70%-90%

Qualitative

Thank you for listening

- Fibres of Failure: Classify failure modes
 - Mapper with failure measure as a filter function
 - Identify high failure flares
 - Inspect failure modes qualitatively
 - Generate ensemble classifier to adjust original predictions