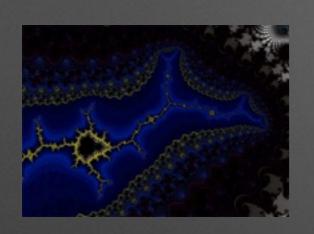
Beauty in Mathematics Mathematics in Beauty

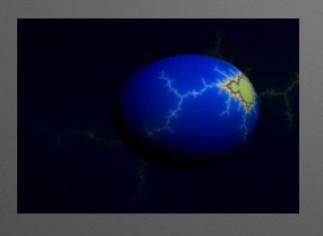
Mikael Vejdemo-Johansson
Dept of Mathematics, CUNY College of Staten Island

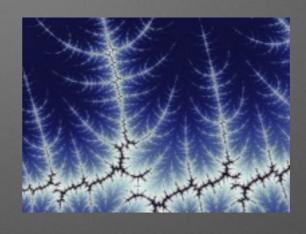
- Beauty in Mathematics
 Elegance in Ideas and Connections
- Mathematics in Beauty
 Art that draws on, Art that illustrates Mathematics
- Mathematical Beauty
 The Maker Revolution

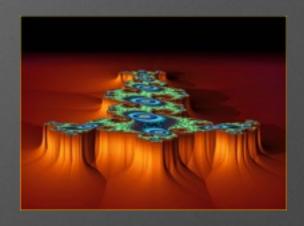
- Beauty in Mathematics
 Elegance in Ideas and Connections
- Mathematics in Beauty
 Art that draws on, Art that illustrates Mathematics
- Mathematical Beauty The Maker Revolution

Accidental Beauty: Fractals, Patterns









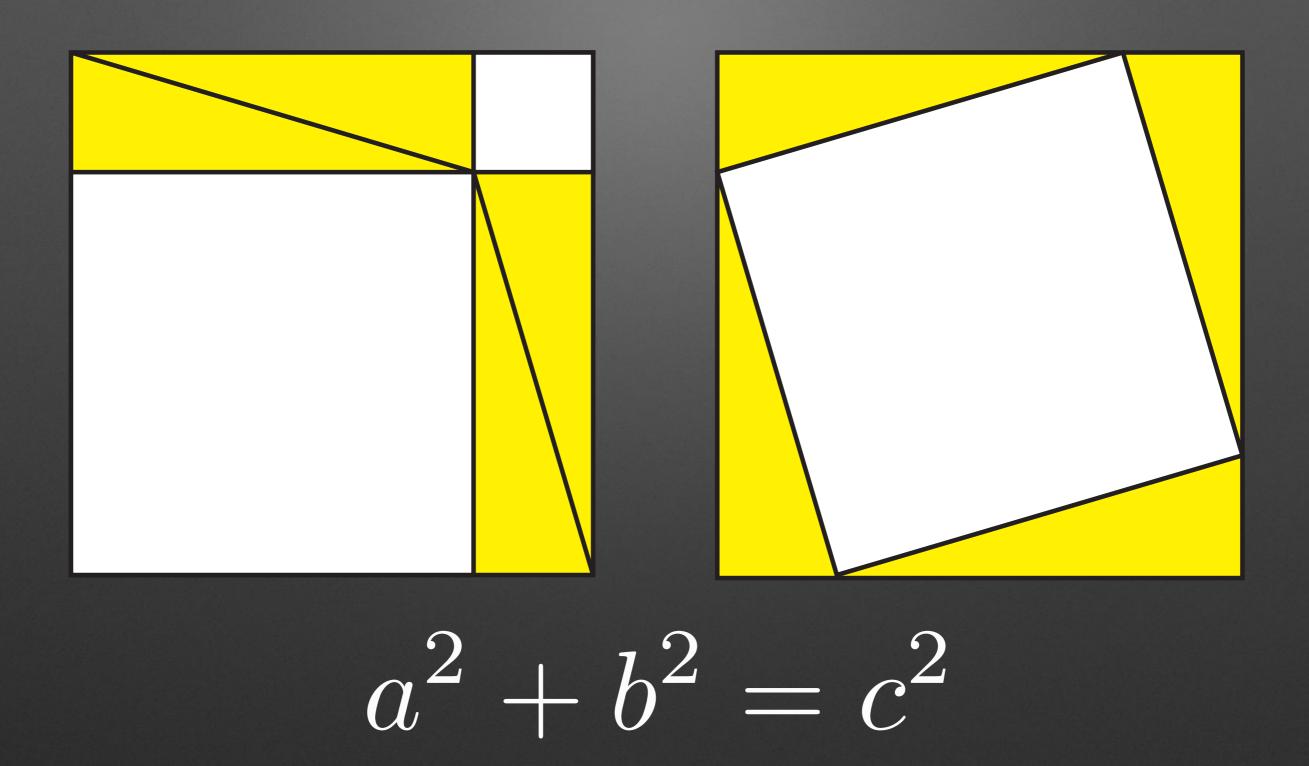
Abstract Beauty: The aesthetics of *ideas*

- Core aspect of mathematical beauty: Elegance
- Hardy: Inevitability, Unexpectedness and Economy
- Erdős:

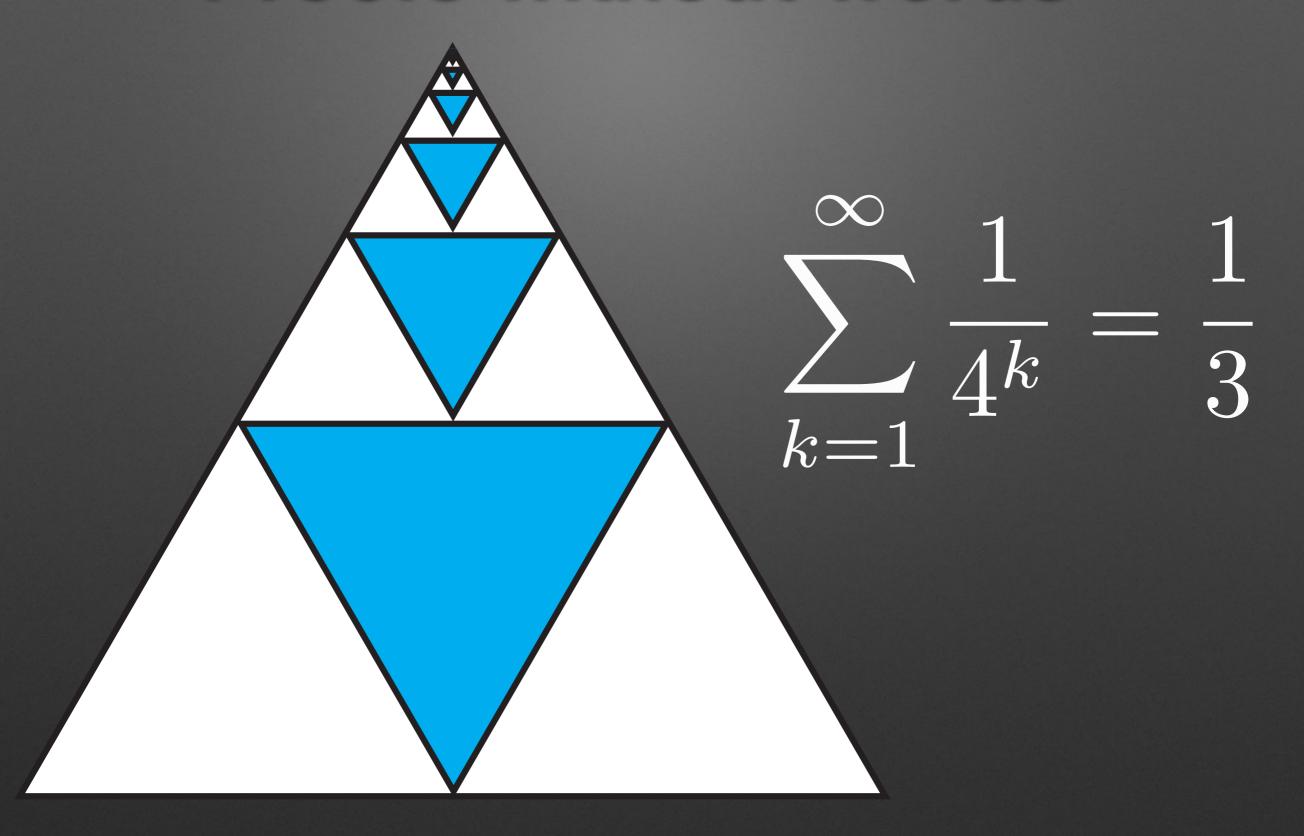
God keeps The Book, containing the most elegant proof of each mathematical theorem.

You don't have to believe in God, but you should believe in The Book.

Proofs without words



Proofs without words



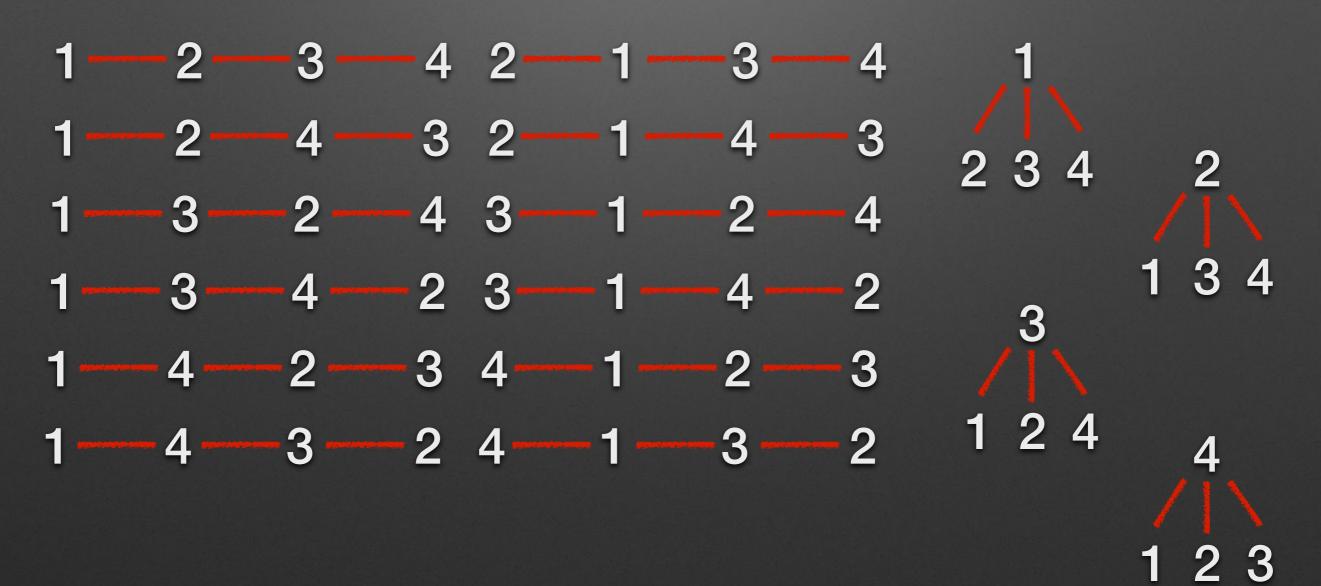
- Theorem: There are infinitely many prime numbers
- Proof: Suppose there were finitely many, p₁, ..., p_k.
 Multiply them all together, add 1 to form a new number
 N = p₁...p_k+1.

N is not divisible by any one of the p_j - it gives a residue of 1. Either N is prime, or it is a product of primes not in the list.

Hence no finite list of primes can be complete.

• Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.

 Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.



- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- Proof: First, consider trees with two vertices marked.
 The marked vertices can be picked in n ways each so the number of trees = number of bi-marked trees / n².



- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- Proof...: If there are nⁿ bi-marked trees, then the theorem is proven.

One thing there are n^n of is functions $\{1,...,n\} \rightarrow \{1,...,n\}$.

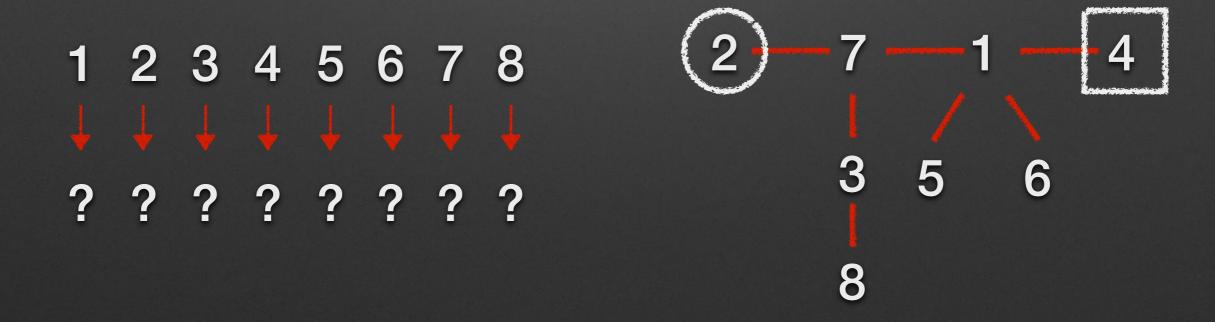
```
1 2 3 4 5 6 7 8

\[ \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{3} \]
```

- Theorem: There are exactly nⁿ⁻² trees with vertices
 1, ..., n.
- Proof...: From a bi-marked tree we build a function.
 First stretch the tree by the markings.

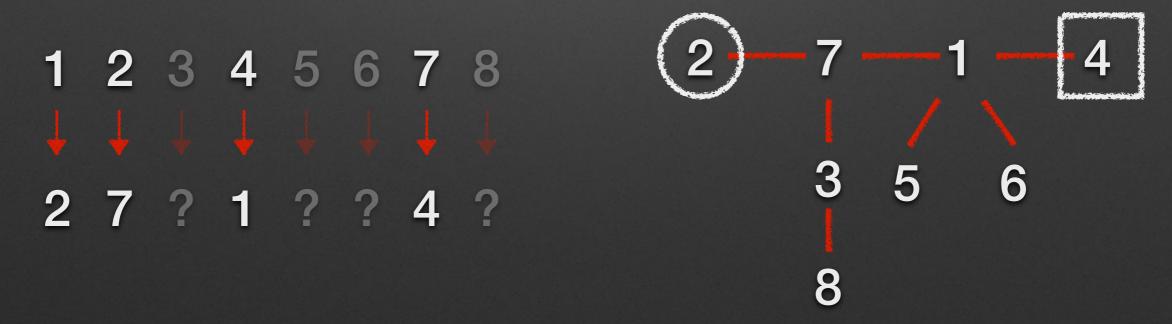
- Theorem: There are exactly nⁿ⁻² trees with vertices
 1, ..., n.
- Proof...: From a bi-marked tree we build a function.

First stretch the tree by the markings.



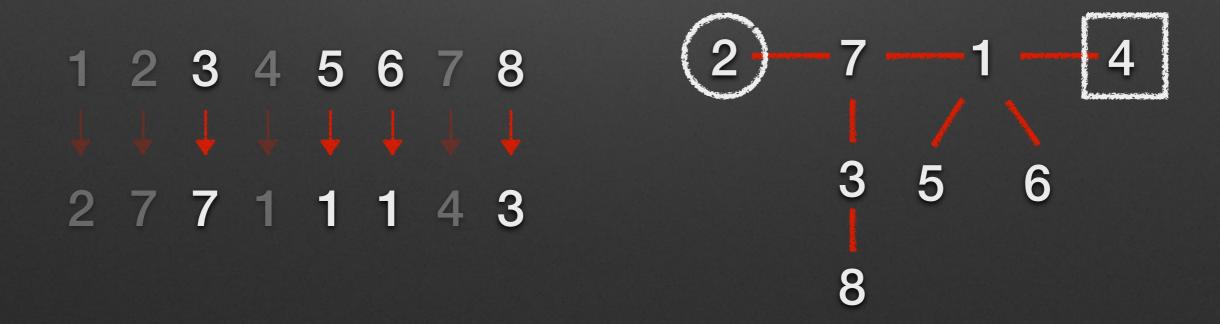
- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- Proof...: From a bi-marked tree we build a function.

Next, fill in the function for the path between the marks by just reading off the order in the path

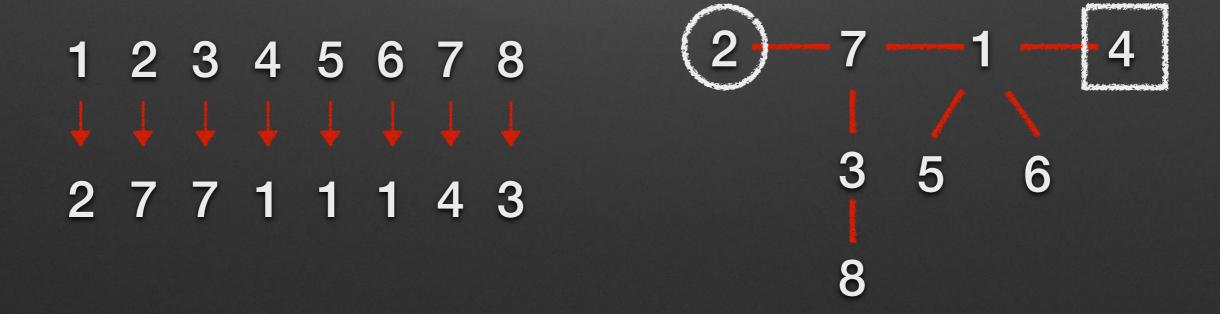


- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- Proof...: From a bi-marked tree we build a function.

Finally, let the tails flow towards the bi-marked path.



- Theorem: There are exactly nⁿ⁻² trees with vertices
 1, ..., n.
- Proof...: Any bi-marked tree creates a different function.



- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- **Proof...**: Any function creates a different bimarked tree: pick out *cycles* in the function: the lower row forms the marked path. The remaining parts attach to the path as the function specifies.

```
      1
      2
      3
      4
      5
      6
      7
      8

      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
      1
```

- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- **Proof...**: Any function creates a different bimarked tree: pick out *cycles* in the function: the lower row forms the marked path. The remaining parts attach to the path as the function specifies.

```
      1
      2
      3
      4
      5
      6
      7
      8

      1
      1
      1
      1
      1
      1
      1
      1
      1

      2
      4
      2
      5
      1
      6
      8
      5
```

- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- **Proof...**: Any function creates a different bimarked tree: pick out *cycles* in the function: the lower row forms the marked path. The remaining parts attach to the path as the function specifies.

- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- **Proof...**: Any function creates a different bimarked tree: pick out *cycles* in the function: the lower row forms the marked path. The remaining parts attach to the path as the function specifies.

```
    1 2 3 4 5 6 7 8
    2 4 5 6 7 8

    1 2 3 4 5 6 7 8
    2 4 5 6 7 8

    2 4 2 5 1 6 8 5
```

- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- **Proof...**: Any function creates a different bimarked tree: pick out *cycles* in the function: the lower row forms the marked path. The remaining parts attach to the path as the function specifies.

- Theorem: There are exactly nⁿ⁻² trees with vertices 1, ..., n.
- Proof...: In conclusion:
 Every bi-marked tree produces a function
 Every function produces a bi-marked tree.

So there are nⁿ bi-marked trees.

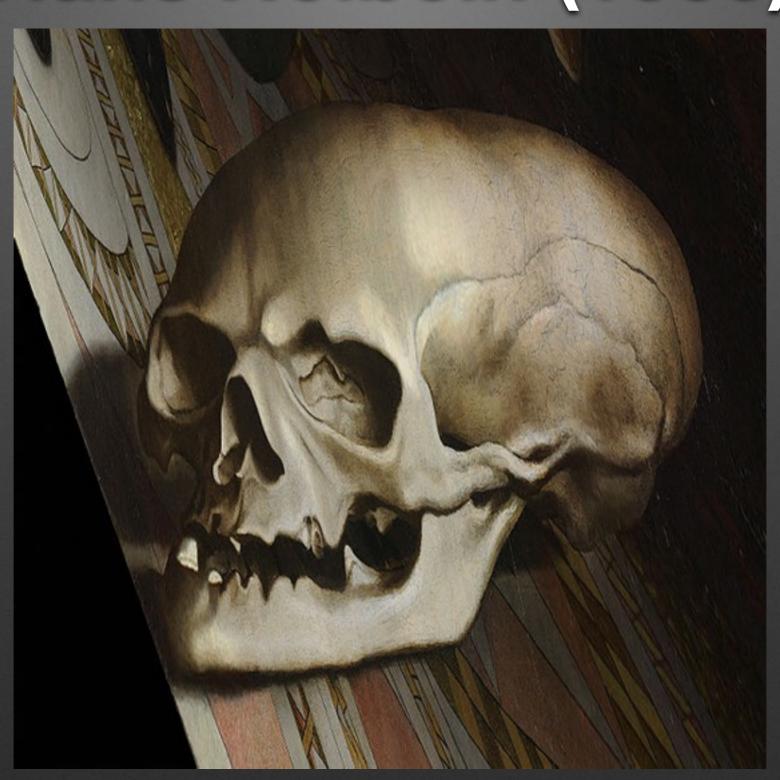
So there are nⁿ⁻² trees.

- Beauty in Mathematics
 Elegance in Ideas and Connections
- Mathematics in Beauty
 Art that draws on, Art that illustrates Mathematics
- Mathematical Beauty The Maker Revolution

Albrecht Dürer (1514)

Anamorphosis Hans Holbein (1533)

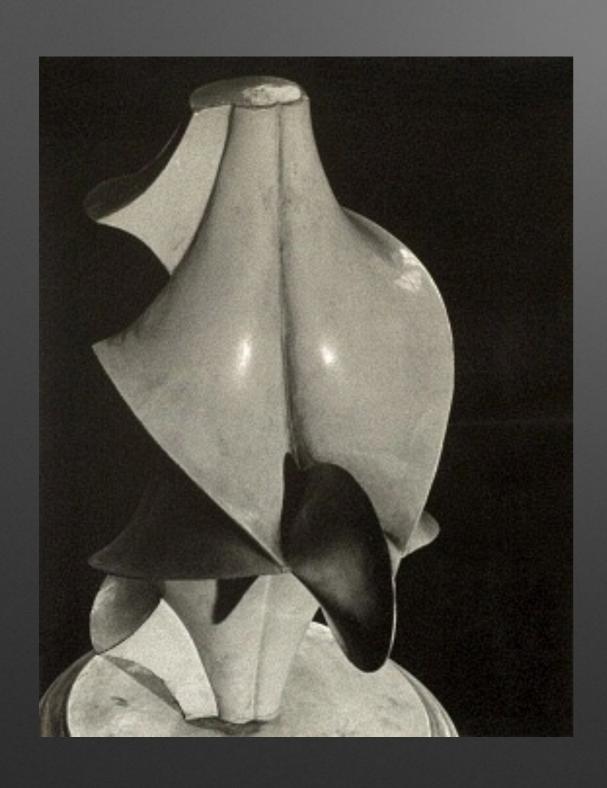
Anamorphosis Hans Holbein (1533)



Symmetries

It has been claimed that all 12 possible wallpaper symmetry structures occur in the ornaments at Alhambra.

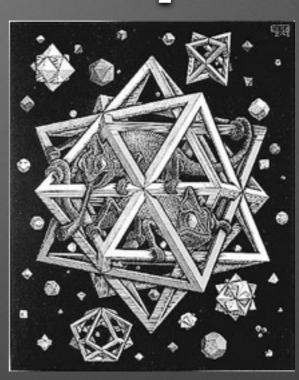
Mathematical objects as art

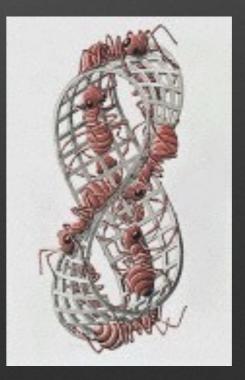


Man Ray: Objet mathematique

Model of an Enneper surface found at Institute Henri Poincaré

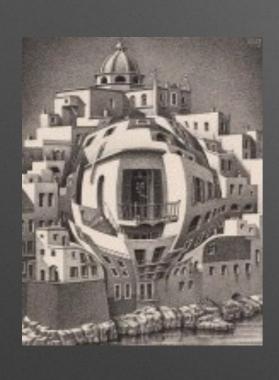
MC Escher Mathematical Shapes

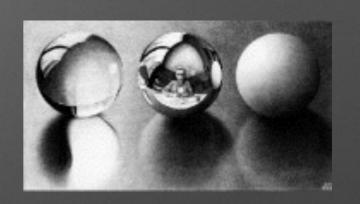




MC Escher Symmetries and Tilings

MC Escher Non-Flat Geometry

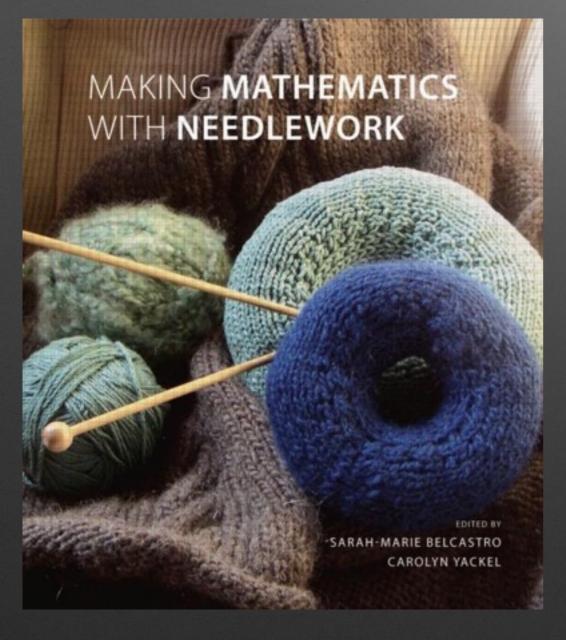


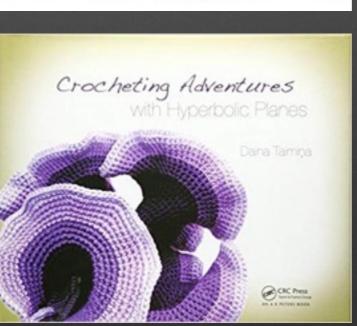


- Beauty in Mathematics
 Elegance in Ideas and Connections
- Mathematics in Beauty
 Art that draws on, Art that illustrates Mathematics
- Mathematical Beauty
 The Maker Revolution

Mathematics in Crafts

Every Year, the Mathematical Knitting Circle convenes





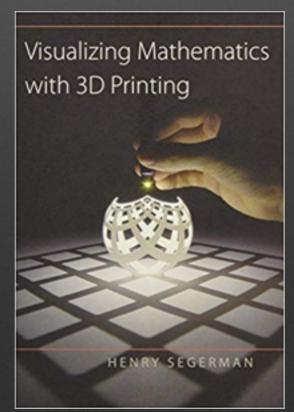
Computerized Manufacturing The Maker Revolution

- Small scale manufacturing tools are now available at consumer prices
- Laser cutters, 3d printers, CNC mills, Vacuum formers
- Generates an entire genre of algorithmic, reified mathematical art

Cutting and Etching

3d printing

Bathsheba Grossman



Algorithmic Knitting

Fabienne Serriere