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Roadmap
Topological Data Analysis 

Use linear algebra to 
compute homology on data 
sets measuring their clusters, 

holes and bubbles.

Geometric Data Analysis 
Use manifolds to estimate 

point cloud data.

Information Geometry 
Use differentiable manifolds 

to study parametrized 
distributions.

Algebraic Statistics 
Use algebraic geometry to 
study statistics – with bonus 

content: use category theory 
to study statistical models.



Unifying 
perspective: 
Data has shape. 
Shape matters.



Data has shape



Data has shape

The mean (or centroid) gives us a location 
for the data set



Data has shape

Variance (and covariance) measure how 
much and in what directions data spreads 
out.



Data has shape

PCA fits a best matching coordinate system 
to the data.



Data has shape

Clustering interprets the data as a collection 
of discrete unconnected points.



Shape matters

Your choice of data analysis tool imposes 
assumptions that your data may or may not 
obey.



Shape matters

Linear Regression assumes data is (close to) 
an affine hyperplane. 
We have diagnostics to discover if this 
assumption is bad, and plans for when it is.



Shape matters

Machine Learning toolkits come with, inter 
alia, Decision Boundaries that may or may 
not have desirable properties:  
Continuous? Smooth? Connected? Piece-
wise linear? 
We have approaches to measure the shapes 
of these Decision Boundaries.



Shape matters

When expanding our toolboxes, we want to 
control, and preferably limit, the implicit 
assumptions that our new tools place on our 
data.



Data has shape. 
Shape matters. 
How do we measure shape?

This talk describes four approaches: 
1. Topological Data Analysis 

Use algebraic topology, especially 
homology, to study shapes. 

2. Geometric Data Analysis 
Use Riemannian geometry, Differential 
geometry, and manifolds



Data has shape. 
Shape matters. 
How do we measure shape?

This talk describes four approaches: 
3. Information Geometry 

Model families in classical statistics have 
fruitful differentical geometrical properties. 

4. Algebraic Statistics 
Classic statistical constructions, model 
families, etc can have fruitful algebraic 
geometrical interpretations.



Topological 
Data 
Analysis



Represent 
Data with 
(Simplicial) 
Complexes

TDA has several popular approaches for data analysis. 
All of them build on representing data as a discrete 
topological space (ie simplicial complex): 
• (Persistent) Homology 
• (Persistent) Cohomology 
• Mapper 
Homology uses linear algebra to find holes (…or 
bubbles, or higher-dimensional analogues) 
Cohomology is the linear dual of homology, faster to 
compute, and can find circular coordinates. 
Mapper constructs a simplicial complex model from 
data equipped with a lens function.



The simplest construction to topologize data is the Čech 
complex at scale 𝜀: 
• Vertices are the data points 
• Connect vertices  if the intersection of balls 

with radius 𝜀 centered at the vertices is non-empty
𝑥0, 𝑥2, …,  𝑥𝑑

Persistence: 
Simplicial 
Complexes 
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The most common construction to topologize data is 
the Vietoris-Rips complex at scale 𝜀: 

• Vertices are the data points 

• Connect vertices  if the pair-wise 
distances between vertices is <𝜀

𝑥0, 𝑥2, …,  𝑥𝑑

Persistence: 
Simplicial 
Complexes 
from Data The Vietoris-Rips 

complex is the 
clique complex of 
the Čech complex: 
Add triangles (and 
tetrahedra, and 
higher simplices) 
for all cliques in the 
underlying graph.



With a simplicial complex in place, we can compute 
its homology – a vector space measuring holes and 
bubbles in the simplicial complex.
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With a simplicial complex in place, we can compute 
its homology – a vector space measuring holes and 
bubbles in the simplicial complex.
Break up the complex into building blocks.
Create vector spaces – one for each dimension – with 
the simplices as abstract basis set:

Persistence: 
Homology: 
Chains 𝐶0 𝐶1 𝐶2



The boundary of a simplex is built out of simplices 1 
dimension lower. 
We can define a linear map by sending each simplex to a 
linear combination of its boundary simplices with alternating 
signs – then extend linearly. 
This defines the boundary map ∂.

Persistence: 
Homology: 
Boundary 
Map



In a path of edges, the end-points appear in the 
boundary with opposite signs, cancelling each other 
out. 
If end-points coincide (ie path forms a cycle), then 
the boundary is 0.

Persistence: 
Homology: 
Boundary 
Map
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Homology, 
Cycles and 
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We can use this as a definition:
A chain z is a cycle if ∂z = 0.  
The kernel of ∂ is the cycle group Z.
Some cycles are not surprising: 
the boundary of a boundary is empty – 𝜕2 = 0 .
A chain z is a boundary if there is some w such that 
∂w = z. 
The image of ∂ is the boundary group B.
We would like to be able to nudge cycles across 
parts of the shape without changing what cycle we 
mean (homotopy invariance).
Boundaries tell us exactly when that is possible.
The essential cycles, up to this nudging, are exactly 
the quotient H = Z / B. We call this the homology.



Persistence: 
Homology 
Some 
Examples

 
 

𝐻0(𝑠𝑝h𝑒𝑟𝑒,  𝕜) =  𝕜1

𝐻1(𝑠𝑝h𝑒𝑟𝑒,  𝕜) =  𝕜0

𝐻2(𝑠𝑝h𝑒𝑟𝑒,  𝕜) =  𝕜1

 
 

𝐻0(𝑡𝑜𝑟𝑢𝑠,  𝕜) =  𝕜1

𝐻1(𝑡𝑜𝑟𝑢𝑠,  𝕜) =  𝕜2

𝐻2(𝑡𝑜𝑟𝑢𝑠,  𝕜) =  𝕜1
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𝐻0(𝑠𝑝h𝑒𝑟𝑒,  𝕜) =  𝕜1

𝐻1(𝑠𝑝h𝑒𝑟𝑒,  𝕜) =  𝕜0

𝐻2(𝑠𝑝h𝑒𝑟𝑒,  𝕜) =  𝕜1

 
 

𝐻0(𝑡𝑜𝑟𝑢𝑠,  𝕜) =  𝕜1

𝐻1(𝑡𝑜𝑟𝑢𝑠,  𝕜) =  𝕜2

𝐻2(𝑡𝑜𝑟𝑢𝑠,  𝕜) =  𝕜1

 measures “how many pieces”. 
 measures “how incontractible loops”. 
 measures “how many enclosed voids”.

𝐻0
𝐻1
𝐻2
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We could try just picking some scale to work at.
But even small changes of scale can have dramatic 
effects on the detected features.
The solution: study all scales at once, using 
functoriality and representation theory.

Persistence: 
What scale 
do we use?
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(𝑋) ⊆ 𝑉𝑅𝜀4
(𝑋) ⊆ 𝑉𝑅𝜀5

(𝑋)
By functoriality we get a sequence of linear maps between 
homology groups:
𝐻𝑉𝑅𝜀1

(𝑋) → 𝐻𝑉𝑅𝜀2
(𝑋) → 𝐻𝑉𝑅𝜀3
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Theory

Theorem (Gabriel, 1972)
A diagram of vector spaces
𝑉1 → 𝑉2 → 𝑉3 → 𝑉4 → 𝑉5

Decomposes into a direct sum of component 
diagrams, each of which is 1-dimensional with 
identity maps in a connected interval, and 0 
elsewhere.    ▪
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Theorem (Gabriel, 1972)
A diagram of vector spaces
𝑉1 → 𝑉2 → 𝑉3 → 𝑉4 → 𝑉5

Decomposes into a direct sum of component 
diagrams, each of which is 1-dimensional with 
identity maps in a connected interval, and 0 
elsewhere.    ▪

In other words, we can make a simultaneous basis 
change for all homology groups at all scales so that 
the induced topological features get mapped 
identically between one scale and the next.
The result can be described with the start- and end-
indices of the connected interval corresponding to 
a feature.



Persistent 
Homology 
 
What do we 
get out of it?

From a dataset (or point cloud) we get a description 
of the topology of a shape resembling the dataset as 
a multiset of intervals  
These descriptors are stable: If the point cloud 
changes by a bounded amount, the end-points of 
intervals can change only by that amount. (length 0 
intervals vanish, and can be created, at will)

(𝑏𝑖, 𝑑𝑖)



Persistent 
Homology 
 
What do 
people do 
with it?

3x3 pixel patches in natural images concentrate on a 
Klein bottle in . This can be used to create 
compression algorithms, rotation invariant signatures 
for image textures , or inform a Convolutional Neural 
Network doing computer vision tasks. 

Chemical properties of zeolites, induced by pore 
geometry, can be given persistent homology 
signatures and used to pre-screen interesting 
compounds before spending time simulating or 
synthesizing them.

ℝ9



Persistent 
Homology 
 
Where can I 
learn more?

Carlsson, Gunnar. "Topology and data." Bulletin of the 
American Mathematical Society 46.2 (2009): 255-308.
Several books exist by now that focus on different 
aspects.



Persistent 
Homology 
 
Where can I 
learn more?

Carlsson, Gunnar. "Topology and data." Bulletin of the 
American Mathematical Society 46.2 (2009): 255-308.
Several books exist by now that focus on different 
aspects.
Release date February 2022:
Carlsson, Gunnar and Vejdemo-Johansson, Mikael. 
“Topological Data Analysis with Applications”. 
Cambridge University Press (2022).
Introduces all relevant topology and the persistence 
theory needed, and ends with a sequence of case 
studies where TDA is applied.
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Changing 
Meaning of 
Geometric 
Data 
Analysis

1960s – 1980s 
Benzécri et al: Analyse des Données / Analyse des 
Correspondances. 
Data is interpreted as point clouds. PCA and variations 
(MCA) adapted for categorical data used. 
1980s- 
Kendall: Shape manifolds, procrustean metrics and 
complex projective spaces. 
Geometric shapes – up to rotation, scaling and 
translation – form manifolds parametrizing the shapes. 
Motivates development of statistics without vector 
space operations – Fréchet Means etc. 
2000- 
Manifold Learning – fit a nice manifold to an observed 
point cloud. Isomap / Locally-linear embeddings / 
Laplacian Eigenmaps / t-SNE / UMAP.



Kendall 
Shape 
Spaces

Shapes are represented by k landmark points in the 
plane: producing vectors in .ℝ2𝑘 = ℂ𝑘

Quotient out translation ( , scale and rotation (ie 
complex scalar multiplication) produces points in 

. In general, the space of k points in d 
dimensions is the shape manifold .
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placed in the induced point of . We augment a point 
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radius ½. 
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plane: producing vectors in .ℝ2𝑘 = ℂ𝑘

Quotient out translation ( , scale and rotation (ie 
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Example 
The space of triangles forms a sphere: first two vertices 
can be fixed to the points . Third vertex is 
placed in the induced point of . We augment a point 
at ∞ representing the case when the first two points 
coincide. This ends up isometric to the sphere with 
radius ½. 

±1 ∈ ℂ
ℂ

This figure shows the view from the north pole (origin): 
the equilateral triangle. As we approach the equator, 
triangles approach sets of collinear points.

Figure from Klingenberg 2015, https://doi.org/10.3390/sym7020843

https://doi.org/10.3390/sym7020843
https://doi.org/10.3390/sym7020843
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aggregated squared distances to the data points.
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Fréchet 
Means

Statistics without arithmetic: mean can not be defined as 

.
1
𝑁 ∑ 𝑥𝑖

Solution: use the fact that the mean minimizes the 
aggregated squared distances to the data points.
Definition 
The Fréchet variance is .𝕍𝐹(𝑝) = ∑ 𝑑(𝑝, 𝑥𝑖)2

The Karcher means are local minima of .𝕍𝐹

The Fréchet mean is the global minimum of , if it exists.𝕍𝐹

Arithmetic mean: use Euclidean distance
Median: use square root of Euclidean distance

Geometric mean: use 𝑑(𝑥, 𝑦) = | log𝑥 − log𝑦 |

Harmonic mean: use 𝑑(𝑥, 𝑦) =
1
𝑥

−
1
𝑦
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Manifold 
Learning

When a (Riemannian) manifold is embedded in a 
Euclidean space, geodesic and ambient distances might 
be very different.
Example 
The Swiss Roll dataset has points sampled on the surface 
of a rolled-up square. Ambient distance methods (such as 
PCA) would put points near each other jumping the gap.
Many manifold learning techniques learn a nearest-
neighbor graph and use graph distance as a proxy for 
geodesic distance.
Laplacian Eigenmaps: eigenmaps of graph Laplacian on 
NN-graph produce coordinates.
Isomap: Multidimensional Scaling (MDS) on weighted 
NN-graph distances.
Locally-Linear Embeddings: Barycentric coordinates for 
each point based on its neighbors. Minimize a cost 
function measuring reconstruction error using 
eigenvalues.

Figure by Oliver Grisel, CC-BY, Wikipedia



Geometric 
Data 
Analysis 
Resources

Geomstats – geomstats.github.io  
Python package for computing with data on 
manifolds, for manifold learning, etc. 
scikit-learn – scikit-learn.org 
Python package for a wide range of machine 
learning tasks, including manifold learning. 
GDAtools 
R package for “old school” Geometric Data Analysis: 
correspondence analysis etc. 
KeOps, GeomLoss 
PyTorch packages for introducing geometric 
methods to deep learning.



Information 
Geometry
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Parametrized 
Distributions

Many probability distributions live in parametrized 
families: 

 

 
 

 
 

Statistical estimation deals with the problem of 
choosing appropriate parameters 𝜃 given observed 
data and a choice of parametrized family P(x|𝜃).

ℓ, 𝑢 → 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(ℓ,  𝑢)
𝜇,  𝜎2 → 𝒩(𝜇, 𝜎2)
𝜆 → 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆)
𝑝 → 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)
𝑛, 𝑝 → 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝)
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Parameters 
form Manifolds 

Uniform: the interval  

Normal: the half-space  

Exponential: the half-line  
Bernoulli: the interval [0,1] 

Binomial: the stripes  

It turns out that manifolds whose points are 
probability distributions form a special class of 
manifolds. We call these statistical manifolds.

[ℓ,  𝑢]

ℝ × ℝ+

ℝ+

ℕ × [0,1]



Information 
Metric

A metric on a parameter manifold should measure 
distinguishability:  
d(p(x|𝜃), p(x|𝜃+d𝜃)) should measure how different p(x|𝜃) is from 
p(x|𝜃+d𝜃).
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The matrix  such that  is the Fisher Information 
Matrix. Interpreting this as a Riemannian Metric Tensor produces 
the Fisher Information Metric.

𝑔𝑎𝑏 𝑑ℓ2 = 𝑔𝑎𝑏𝑑𝜃𝑎𝑑𝜃𝑏



Chentsov’s 
Theorem 
 
(aka Čencov, 
Ченцов)

Theorem
The Fisher Information Metric is (up to scaling) the 
only Riemannian metric on statistical manifolds that is 
invariant under Markov mappings.



Chentsov’s 
Theorem 
 
(aka Čencov, 
Ченцов)

Theorem
The Fisher Information Metric is (up to scaling) the 
only Riemannian metric on statistical manifolds that is 
invariant under Markov mappings.

Here, a Markov mapping can be understood through 
example: consider a 6-sided die with probabilities 

 and 
. The outcomes 

low={1,2,3} and high={4,5,6} can be described as a 
weighted coin with side probabilities 𝜃 and 1-𝜃.

ℙ(1) = ℙ(2) = ℙ(3) = 𝜃/3
ℙ(4) = ℙ(5) = ℙ(6) = (1 − 𝜃)/3

This re-interpretation is an embedding of the 
statistical manifold of Binomial(n,𝜃) into the manifold 
of Multinomial(n;𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6).



Example: 
Multinomial 
Distributions

 

where  and  has parameter 
manifold given by the simplex. The metric tensor has 
entries 

 

where 1≤i,j≤m-1.

𝑃 (𝑛 𝜃) =  
𝑁!

𝑛1!…𝑛𝑚!
𝜃𝑛1

1 …𝜃𝑛𝑚
𝑚

∑ 𝑛𝑖 = 𝑁 ∑ 𝜃𝑖 = 1

𝑔𝑖𝑗 =  
𝑁
𝜃𝑖

𝛿𝑖𝑗 +
𝑁
𝜃𝑚



So… what 
is 
Information 
Geometry?

Using differential geometry tools to study the 
Riemannian metric on statistical manifolds. 
With the Fisher Information tensor in place, we can 
find statistical relevance for geodesics, normal 
projections, parallel transport, covariant derivatives, 
connections, and curvature. 
One first example: 
Fisher Information Metric is the curvature of the 
Kullback-Leibler divergence: 

𝐾𝐿(𝑝:𝑞) =  ∫ 𝑝(𝑥)log
𝑝(𝑥)
𝑞(𝑥)

ⅆ𝑥



What makes 
me excited 
about it?

Baudot and Bennequin, The Homological Nature of 
Entropy, MDPI Entropy 2015, 17, 3253-3318. 
Using homological algebra tools, a topological 
space is constructed such that: degree 1 
cohomology is one-dimensional, and generated by 
the Shannon entropy function. 

Bradley, Entropy as a Topological Operad Derivation, 
MDPI Entropy 2021, 23 (9), 1195. 
Shannon entropy defines a derivation of the operad 
of topological simplices, and for every derivation of 
this operad, at some point it is a constant multiple of 
Shannon entropy.



Where can I 
learn more?

This section was heavily informed by: 
Caticha, The basics of information geometry. AIP 
Conference Proceedings 1641, 15 (2015). 

Canonical reference: 
Amari and Nagaoka, Methods of Information 
Geometry. AMS / Oxford University Press, (2000)



Algebraic 
Statistics



What is Algebraic Statistics?

1998 Diaconis and 
Sturmfels 

Conditional inference – 
random walks on 

contingency tables 
correspond to generating 

sets of toric ideals.

2001 Pistone, Riccomagno 
and Wynn 

Experimental Design using 
Gröbner Bases

2005 Pachter and Sturmfels 
Algebraic Statistics in 

Computational Biology

2005 Studený 
Combinatorics of 

conditional independence 
structures

2009 Drton, Sturmfels and 
Sullivant 

Oberwolfach Lecture Notes.

2012 Aoki, Hara and 
Takemura 

Markov Bases

2016 Zwiernik 
Tree models using real 

algebraic geometry

2018 Sullivant 
Broad overview of the field.

The application of algebraic geometry to problems in statistics and 
probability.



Example: 
Markov 
Chains

A sequence  of random variables on the same state space is a 
Markov Chain if  

 
or in other words, if the next value only depends on its immediate 
predecessor.

𝑋1, 𝑋2, …,  𝑋𝑚

ℙ(𝑋𝑖 = 𝑥𝑖   𝑋1 = 𝑥1, …, 𝑋𝑖−1 = 𝑥𝑖−1) = ℙ(𝑋𝑖 = 𝑥𝑖  |  𝑋𝑖−1 = 𝑥𝑖−1)
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or in other words, if the next value only depends on its immediate 
predecessor.
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Let m=3, and the state space . The chain is fully determined by the 
probabilities of the 8 possible outcome sequences, ie the joint probabilities  

. A full joint probability distribution 
corresponds to a point .

Σ = {0,1}

𝑝𝑖𝑗𝑘 = ℙ(𝑋1 = 𝑖, 𝑋2 = 𝑗, 𝑋3 = 𝑘)
(𝑝000, 𝑝001, 𝑝010, 𝑝011, 𝑝100, 𝑝101, 𝑝110, 𝑝111) ∈ ℝ8
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A sequence  of random variables on the same state space is a 
Markov Chain if  

 
or in other words, if the next value only depends on its immediate 
predecessor.

𝑋1, 𝑋2, …,  𝑋𝑚

ℙ(𝑋𝑖 = 𝑥𝑖   𝑋1 = 𝑥1, …, 𝑋𝑖−1 = 𝑥𝑖−1) = ℙ(𝑋𝑖 = 𝑥𝑖  |  𝑋𝑖−1 = 𝑥𝑖−1)

Let m=3, and the state space . The chain is fully determined by the 
probabilities of the 8 possible outcome sequences, ie the joint probabilities  

. A full joint probability distribution 
corresponds to a point .

Σ = {0,1}

𝑝𝑖𝑗𝑘 = ℙ(𝑋1 = 𝑖, 𝑋2 = 𝑗, 𝑋3 = 𝑘)
(𝑝000, 𝑝001, 𝑝010, 𝑝011, 𝑝100, 𝑝101, 𝑝110, 𝑝111) ∈ ℝ8

Conditional probabilities for  correspond to ratios 𝑋3 𝑝𝑖𝑗𝑘 /(𝑝𝑖𝑗0 + 𝑝𝑖𝑗1)
Gathering up all these ratios, clearing denominators, and simplifying we can 
characterize the Markov Chains by:

, , , 𝑝𝑖𝑗𝑘 ≥ 0 ∑ 𝑝𝑖𝑗𝑘 = 1 𝑝000𝑝101 − 𝑝001𝑝100 = 0 𝑝010𝑝111 − 𝑝011𝑝110 = 0

This defines a semialgebraic set in .ℝ8



Key Features of Algebraic Statistics

(VERY MANY) STATISTICAL 
MODELS ARE SEMIALGEBRAIC 

SETS.

PARAMETRIC STATISTICAL 
MODELS ARE (OFTEN) 

POLYNOMIAL FUNCTIONS OF 
THEIR PARAMETERS.

ESTIMATION AND MODEL 
FITTING CORRESPONDS TO 

FINDING POINTS ON VARIETIES 
OR SEMIALGEBRAIC SETS.

HYPOTHESIS TESTING OF 
MODEL FIT CORRESPONDS TO 

CHECKING WHETHER A POINT IS 
ON A GIVEN VARIETY.



Beyond 
Algebraic 
Statistics: 
Categorical 
Statistics

Statistics and Probability by creating a category with 
sufficient structure to enable calculus with string 
diagrams (ie symmetric monoidal).
• Morphisms are probabilistic functions
• Category contains copying morphisms and deletion 

morphisms.



Beyond 
Algebraic 
Statistics: 
Categorical 
Statistics

Statistics and Probability by creating a category with 
sufficient structure to enable calculus with string 
diagrams (ie symmetric monoidal).
• Morphisms are probabilistic functions
• Category contains copying morphisms and deletion 

morphisms.
One example: BorelStoch has
• Objects: standard Borel spaces (finite sets, ℕ and [0,1])
• Morphisms: Measurable Markov kernels 

(generalized Markov transition matrices; a kernel 
 associates to each  a 

probability measure on  so that this association is 
a measurable map wrt A 

Composition by , ie 

integrate over all possible intermediary points)

𝜅 : (𝑋, 𝐴) → (𝑌, 𝐵) 𝑥 ∈ 𝑋
(𝑌, 𝐵)

(𝜆 ∘ 𝜅)(𝑑𝑧 𝑥) = ∫
𝑌

𝜆(𝑑𝑧 𝑦)𝜅(𝑑𝑦 |𝑥)

• Monoidal structure by products of measurable spaces.



Categorical 
Statistics: 
Theories 
and Models

(Patterson, 2020) 
A statistical theory is a small Markov category T with a 
distinguished sampling morphism p.

A model of a statistical theory is a functor , where Stat 
is a specific Markov category for modeling statistics.

𝑇 → 𝑆𝑡𝑎𝑡
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A statistical theory is a small Markov category T with a 
distinguished sampling morphism p.

A model of a statistical theory is a functor , where Stat 
is a specific Markov category for modeling statistics.

𝑇 → 𝑆𝑡𝑎𝑡

Example: 
A linear model with design matrix  has sampling 
distribution  with parameters .

𝑋 ∈ ℝ𝑛×𝑝

𝑦 ∼ 𝒩(𝑋𝛽, 𝜎2𝐼𝑛) 𝛽 ∈ ℝ𝑝,  𝜎2 ∈ ℝ+

A theory of a linear model has objects  and 
morphisms  and , and sampling 
morphism:

𝑦,  𝛽,  𝜇,  𝜎2

𝑋 :𝛽 → 𝜇 𝒩:𝜇 ⊗ 𝜎2 → 𝑦

X

𝒩

𝛽

𝜇

𝜎2

𝑦
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(Patterson, 2020) 
A statistical theory is a small Markov category T with a 
distinguished sampling morphism p.

A model of a statistical theory is a functor , where Stat 
is a specific Markov category for modeling statistics.

𝑇 → 𝑆𝑡𝑎𝑡

Example: 
A linear model with design matrix  has sampling 
distribution  with parameters .
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X

𝒩

𝛽

𝜇

𝜎2

𝑦

Theory Model Linear 
map

Isotropic 
normal 
sample

ℝ𝑝

ℝ𝑛

ℝ+

ℝ𝑛



Categorical 
Statistics: 
Theories 
and Models

(Patterson, 2020) 
A statistical theory is a small Markov category T with a 
distinguished sampling morphism p. 

A model of a statistical theory is a functor , where 
Stat is a specific Markov category for modeling statistics. 
Example: 
A general linear model has sampling distribution 

 with h an invertible link function. 

A theory of a general linear model has objects  
and morphisms ,  and :

𝑇 → 𝑆𝑡𝑎𝑡

𝑦 ∼ 𝒩(h(𝑋𝛽), 𝜎2𝐼𝑛)

𝑦,  𝛽,  𝜇,  𝜂,  𝜎2

𝑋 :𝛽 → 𝜂 h :𝜂 → 𝜇 𝒩:𝜇 ⊗ 𝜎2 → 𝑦

h

𝒩

𝜂

𝜇

𝜎2

𝑦

X

𝛽



Categorical 
Statistics: 
Theories 
and Models

(Patterson, 2020) 
A statistical theory is a small Markov category T with a 
distinguished sampling morphism p. 

A model of a statistical theory is a functor , where 
Stat is a specific Markov category for modeling statistics. 
Example: 
A general linear model has sampling distribution 

 with h an invertible link function. 

A theory of a general linear model has objects  
and morphisms ,  and :

𝑇 → 𝑆𝑡𝑎𝑡

𝑦 ∼ 𝒩(h(𝑋𝛽), 𝜎2𝐼𝑛)

𝑦,  𝛽,  𝜇,  𝜂,  𝜎2

𝑋 :𝛽 → 𝜂 h :𝜂 → 𝜇 𝒩:𝜇 ⊗ 𝜎2 → 𝑦

h

𝒩

𝜂

𝜇

𝜎2

𝑦

X

𝛽
Setting  and choosing  
creates a theory morphism 

 
which induces a model migration 
functor 

𝜂 = 𝜇 h = 𝐼𝑑

𝐺 :  𝐺𝐿𝑀 → 𝐿𝑀

𝐺∗ :𝑀𝑜𝑑(𝐿𝑀 ) → 𝑀𝑜𝑑(𝐺𝐿𝑀 )



Thank you for listening
Topological Data 

Analysis 
Use linear algebra to 
compute homology 

on data sets 
measuring their 

clusters, holes and 
bubbles.

Geometric Data 
Analysis 

Use manifolds to 
estimate point cloud 

data.

Information 
Geometry 

Use differentiable 
manifolds to study 

parametrized 
distributions.

Algebraic Statistics 
Use algebraic 

geometry to study 
statistics – also: use 
category theory to 

study statistical 
models.
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